OFF-SITE AREA FINAL ENGINEERED COVER CONSTRUCTION COMPLETION REPORT

AMERICAN CHEMICAL SERVICE, INC. NPL SITE GRIFFITH, INDIANA

MWH File No. 2090601

EPA Region 5 Records Ctr.

Prepared For:

American Chemical Service NPL Site RD/RA Executive Committee

Prepared by:

Robert A. Adams, P.E.

Senior Engineer

JUNE 28, 2004

Date

Approved by:

Peter Vagt/Ph.D., CPG

Project Manager

Date

TABLE OF CONTENTS

<u>SEC</u>	TIO	<u>N</u>	PAGE
ACF	RONY	YMS AND ABBREVIATIONS	iv
1.0	INT	TRODUCTION	1
	1.1	Objectives of the Off-Site Area Final Engineered Cover	1
	1.2	Off-Site Area Engineered Cover Areas	
	1.3	Off-Site Area Engineered Cover Installation	2
	1.4	Report Organization	2
2.0	REL	LOCATION OF PCB-IMPACTED MATERIAL	4
	2.1	Stockpile o PCB-Impacted Material in Former Fire Pond Area	4
	2.2	Removal of Clay Layer	
	2.3	Transportation and Placement of PCB-Impacted Material	4
	2.4	Placement and Compaction of Clay Layer	
3.0	FIN	IAL COVER INSTALLATION ACTIVITIES IN FML COVER AREA	
	3.1	Maintenance Activities	6
	3.2	Site Preparation and Grading	6
	3.3	Construction of Anchor Trench	6
	3.4	Test Pad Construction	8
	3.5	Flexible Membrane Liner Installation	8
	3.6	Root Zone Material Placement	
	3.7	Topsoil Placement and Seeding	
	3.8	Access Road Installation	
	3.9	Repair to Soil Vapor Extraction Well SVE-38	
4.0	SUN	MMARY OF FINAL COVER INSTALLATION ACTIVITIES IN SOIL CO	VER
		EA	
	4.1	Clay Placement	
	4.2	Topsoil and Grass Seed Placement	
5.0	MA	TERIAL TESTING AND QUALITY CONFIRMATION	
	5.1	Imported Soil Material Testing	
		5.1.1 Chemical Analytical Testing	
		5.1.2 Geotechnical Testing	
		5.1.3 Visual Inspection	
	5.2	Factory Testing of FML Material	
	5.3	Field Testing of FML	16
		5.3.1 Visual Observation	
		5.3.2 Trial Weld Testing	
		5.3.3 Fusion and Extrusion Weld Nondestructive Testing	
		5.3.4 Fusion and Extrusion Weld Destructive Testing	
		5.3.5 Repairs and Additional Testing	
	5.4	Evaluation of Construction Materials	
	5.5	Surveying	

TABLE OF CONTENTS (Continued)

<u>SEC</u>	TION	<u>1</u>	<u>PAGE</u>
6.0	HEA	LTH AND SAFETY	
	6.1	Relocation of PCB-Impacted Material	
	6.2	Final Cover Installation Activities	
7.0		IMARY	
8.0	REF	ERENCES	24
		TABLES	
Table	e l	Clay Cover Moisture and Compaction Test Results	
Table	e 2	Measured Clay Thickness	
Table	_	Test Pad Moisture and Compaction Test Results	
Table		Chemical Analytical Data for Merrillville Borrow Source Material	
Table	e 5	Geotechnical Testing Results of Borrow Source Material	
Table	-	Root Zone and Topsoil Moisture and Compaction Test Results	
Table	-	Root Zone Sand Cone Test Results	
Table	e 8	Depth of Root Zone and Topsoil Material	
		FIGURES	
Figur		Extent of Relocation Activities	
Figur		Top of Clay Elevations	
Figur		Details	
Figur		Flexible Membrane Liner Extents and Seam Locations	
Figur		Compaction and Moisture Test Locations	
Figur		Top of Root Zone Elevations	
Figur		Top of Topsoil Elevations (Site As-Built)	
Figur	re 8	Survey Locations	

APPENDICES

Appendix A	Chronological Summary of Construction Activities
Appendix B	Photographs
Appendix C	Compaction and Moisture Testing Results of Clay Material (Great Lakes)
Appendix D	Compaction and Moisture Testing Results for Test Pad (K&S)
Appendix E	Factory Test Records for FML Material (Poly-Flex)
••	Poly-Flex Warranty Letter
	Poly-Flex Certification Documents
Appendix F	Field Test Records for FML Installation (Mid-America Lining)
	Certificates of Acceptance of Soil Subgrade Surface
	Panel Placement Log
	Panel Seaming Form
	Non-Destructive Test Log
	Field Destructive Test Log
	Laboratory Destructive Test Results
	Repair Log
	Trial Weld Log
	Quality Control (QC) Daily Field Report
	Certificate of Acceptance for Installed FML
Appendix G	Chemical Analytical Testing of Borrow Source Material (First Environmental)
• •	Merrillville Source Sample
Appendix H	Geotechnical Laboratory Testing Results of Root Zone Source Material (K&S
	Engineers, Inc. [K&S])
Appendix I	Compaction and Moisture Testing Results of Root Zone Material (K&S)
	Nuclear Density Testing Results
	Sand Cone Method Testing Results
Appendix J	Air Monitoring Logs for Trench Installation Activities
Appendix K	Manufacturer/Supplier Specification Sheets

ACRONYMS AND ABBREVIATIONS

ACS American Chemical Service, Inc.

BWES Barrier Wall Extraction System

CCR Construction Completion Report

CQAP Construction Quality Assurance Plan

ECI Environmental Contractors of Illinois

EW Extraction Well

FML Flexible Membrane Liner

Great Lakes Great Lakes Soil and Environmental GWTP Groundwater Treatment Plant

IDEM Indiana Department of Environmental Management

IEPA Illinois Environmental Protection Agency

ISVE In-Situ Vapor Extraction K&S K&S Engineers, Inc.

KES Koester Environmental Services

K-P Area Kapica-Pazmey Area MAL Mid-America Lining

MEI Midwest Environmental, Inc.
mg/kg milligrams per kilogram
NPL National Priority List
OFCA Off-Site Containment Area
PCB Polychlorinated Biphenyl
PPE Personal Protective Equipment

ppm parts per million

PRGs Preliminary Remediation Goal

psi pounds per square inch

PSVP Performance Standard Verification Plan

OC Quality Control

Region IX United States Environmental Protection Agency Region IX

RISC Risk-Integrated System of Closure

SBPA Still Bottoms Pond Area SVE Soil Vapor Extraction

SVOC Semivolatile Organic Compound

TRI TRI Environmental, Inc.

U.S. EPA United States Environmental Protection Agency

VFPE Very Flexible Polyethylene VOC Volatile Organic Compound

1.0 INTRODUCTION

This Construction Completion Report (CCR) summarizes the installation of the final engineered cover in the Off-Site Area of the American Chemical Service, Inc. (ACS) National Priorities List (NPL) Site in Griffith, Indiana. The cover was installed during the summer and fall of 2002. The United States Environmental Protection Agency (U.S. EPA) Consent Decree identification number for the final engineered cover is 5.b (Appendix G, Consent Decree).

1.1 OBJECTIVES OF THE OFF-SITE AREA FINAL ENGINEERED COVER

As outlined in the Final Remedial Design Report (Montgomery Watson, August 1999) the main objectives for the Off-Site Area engineered cover are to:

- Eliminate potential direct contact with volatile organic compound (VOC) and polychlorinated biphenyl (PCB)-contaminated soils (and lead-contaminated soils in the Kapica-Pazmey Area [K-P Area]);
- Eliminate potential worker contact with VOC-contaminated groundwater;
- Reduce the potential for contaminant migration to groundwater by reducing infiltration into these areas; and
- Provide a surface seal for the In-Situ Soil Vapor Extraction (ISVE) system to minimize potential short-circuiting and maximize the capture of VOC vapors.

In addition, covering the Off-Site Area reduces the stormwater infiltration into the area inside the barrier wall. This reduces the amount of groundwater that needs to be extracted and treated by the Groundwater Treatment Plant (GWTP) during ISVE implementation and long-term operation of the Barrier Wall Extraction System (BWES).

1.2 OFF-SITE AREA ENGINEERED COVER AREAS

The Off-Site Area was divided into two distinct areas that would each receive a different engineered cover system. The area that contains buried waste to be treated by ISVE is designated as the "Flexible Membrane Liner (FML)" Cover Area. This area includes the Off-Site Containment Area (OFCA) and K-P Area. The cover in this area consists of a 12-inch compacted clay layer and a very flexible polyethylene (VFPE) liner. Twelve inches of root zone, six inches of topsoil, and a vegetative layer were then placed on top of the FML material. The eastern boundary of this area extends slightly farther than shown in the Final Remedial Design Report. The cover was extended approximately 10 to 20 feet to fully cover the regraded wetland pond excavated root zone material pile as required.

The remaining portion of the Off-Site Area that does not contain buried waste is designated as the "Soil Cover Area." This area will not be directly treated by ISVE. The cover for this area consists of 18 inches of compacted clay covered with 6 inches of topsoil and vegetation. The area is not covered with the FML. The boundaries of each of these areas are shown on Figure 1.

1.3 OFF-SITE AREA ENGINEERED COVER INSTALLATION

Two tasks in the Consent Decree deal with the construction of the Off-Site Area Cover: the interim engineered cover (Consent Decree ID 5.a.) and the final cover (Consent Decree ID 5.b.). The installation was divided into these two phases to allow for installation and optimization of the ISVE system before installation of the FML to minimize potential damage to the cover if repairs or modifications to the ISVE were found to be necessary.

The interim engineered cover consists of the initial 12 inches of compacted clay across the Off-Site Area. In the FML Cover area, the final cover consists of a 60-mil VFPE liner on top of the 12 inches of compacted clay, covered by 12 inches of earthen material and six inches of topsoil. The earthen material serves as a root zone to support a healthy root matrix for the overlying vegetative layer planted in the topsoil. In the Soil Cover area (non-ISVE area), the final cover consists of an additional six inches of compacted clay for a total of 18 inches of compacted clay. The clay is covered with vegetative material (grass) to minimize erosion.

This CCR covers primarily the installation of the final engineered cover in the FML Cover Area. The majority of the final cover in the Soil Cover Area (non-ISVE area) was completed during the installation of the interim engineered cover in 2001. While information regarding the final cover installation in the Soil Cover Area is briefly summarized in this report, additional information can be found in the Final Off-Site Area Interim Engineered Cover Construction Completion Report (CCR) (MWH, February 2003).

1.4 REPORT ORGANIZATION

This CCR is organized in the eight sections summarized below:

Section 1: Introduction. This section lists the objectives of the work activities and summarizes the Site history.

Section 2: Relocation of PCB-Impacted Material. This section summarizes the activities involved in moving PCB-impacted material from the Still-Bottom Pond Area (SBPA) and placing it under the clay cover in the FML Cover Area.

Section 3: Final Cover Installation Activities in the FML Cover Area. This section summarizes construction activities involved in installing the final engineered cover in the FML Cover Area.

Section 4: Summary of Final Cover Installation Activities in the Soil Cover Area. This section summarizes the construction activities involved in installing the final cover in the Soil Cover Area.

Section 5: Material Testing and Quality Confirmation. This section outlines the material testing and quality confirmation methods employed, including destructive and non-destructive testing of the FML and the compaction testing of installed root zone and topsoil material in the FML Cover Area.

Section 6: Health and Safety. This section summarizes the health and safety measures maintained during the project.

Section 7: Summary. This section provides an overall summary of the work on the Off-Site Area Final Engineered Cover.

Section 8: References. This section lists documents referred to in this report.

Appendix A contains a chronological summary of construction activities and Appendix B includes photographs of key tasks included in this CCR. Appendices C through J contain testing results and manufacturer specifications associated with the project activities.

2.0 RELOCATION OF PCB-IMPACTED MATERIAL

2.1 STOCKPILE OF PCB-IMPACTED MATERIAL IN FORMER FIRE POND AREA

During the PCB-Impacted Soil Excavation activities in 2001, impacted material was excavated from the wetland west of the ACS facility and used to fill and close the empty Fire Pond in the SBPA of the On-Site Area. The impacted material was analyzed for PCBs and was determined to contain levels below 50 parts per million (ppm), the established threshold requiring off-site disposal.

Since sampling showed that PCB concentrations were less than 50 ppm, no material required off-site disposal, and a larger volume of PCB-impacted soil was placed in the Fire Pond than originally estimated. This resulted in higher ground surface elevations than originally anticipated. Therefore, in order to meet the design grades in the On-Site Area, approximately 3,800 cubic yards of PCB-impacted material was relocated to drainage Swale 5 in the Off-Site Area (see Figure 1).

Additional information on the PCB-impacted material can be found in the PCB-Impacted Soil Excavation CCR (MWH, November 2002). Construction completion details regarding the Fire Pond Closure are included in the Still Bottoms Pond Area Interim Engineered Cover CCR (MWH, March 2004).

2.2 REMOVAL OF CLAY LAYER

Midwest Environmental, Inc. (MEI) was selected to perform the PCB-impacted material relocation during July 2002. MEI prepared the Swale 5 area of the Off-Site Area by removing the 12-inch thick clay cover using a bulldozer. The clay was stockpiled at the perimeter of Swale 5 for later reuse.

2.3 TRANSPORTATION AND PLACEMENT OF PCB-IMPACTED MATERIAL

PCB-impacted material was transported from the Former Fire Pond Area to the Off-Site Area using dump trucks loaded by an excavator. The dump trucks drove through the gate connecting the On-Site and Off-Site Areas where the material was unloaded into Swale 5 and graded smooth with a bulldozer in one 12-inch lift. Photographs 1 and 2 in Appendix B show the transportation of the PCB-impacted materials. The material was then compacted using a smooth drum vibrating roller in preparation for the replacement of the clay layer. Photographs 3 and 4 in Appendix B show the placement and compaction of the PCB-impacted materials.

Heavy equipment used to haul and compact the PCB-impacted material was visually examined for excess dirt between loads, and any identified soil was scraped off and placed in

Swale 5. Decontamination at the completion of the task was done using a pressure washer at the drum pad in the ACS facility. The decontamination water was pumped to the GWTP for treatment.

2.4 PLACEMENT AND COMPACTION OF CLAY LAYER

After the PCB-impacted material had been placed in Swale 5 to the determined grade, the 12-inch clay layer was then replaced and compacted on top of the PCB-impacted material in two six-inch lifts. Additional clay was imported from the same Merrillville, Indiana clay source as was used during the 2001 Interim Engineered Cover activities to supplement the clay that had been removed.

The clay was wetted as needed and compacted with a sheep's foot compactor and a smoothdrum roller until the compaction and moisture requirements for the interim clay cover were met. The compaction requirement for the clay was 95 percent of the maximum dry density of 115 pounds per cubic foot (pcf). The moisture requirement for the clay was 17 percent plus or minus 2 percent. Photographs 5 and 6 in Appendix B show the compaction efforts of the clay placement. The compaction and moisture testing was performed by Great Lakes Soil & Environmental, Inc. (Great Lakes). Compaction test results are included in Table 1. MWH measured final clay thicknesses in this area to confirm that sufficient thicknesses were achieved. The average measured clay thickness was 12 to 12.25 inches as shown on Table 2. However two measured thicknesses were less than 12 inches, one at 10 inches and the other at 11 inches. MWH determined that these two locations of deficient clay would not result in a significant increase in the infiltration rate. In addition, the flexible membrane layer (FML) was installed to provide the main barrier to infiltration with the clay only providing a secondary barrier. Based on the relatively small size of these potentially deficient areas, MWH determined that performing permeability testing at these locations was not necessary and that the overall clay thickness of the area was calculated to meet the project's hydraulic conductivity requirements for clay placement, based on average thickness.

Compaction and moisture testing results for this task are included in Appendix C. Figure 2 shows final ground surface contours after the replacement of the clay cover.

3.0 FINAL COVER INSTALLATION ACTIVITIES IN FML COVER AREA

3.1 MAINTENANCE ACTIVITIES

In preparation for the construction of the final cover, MWH developed a list of maintenance items to be completed in the Off-Site Area. MEI completed this preparatory work during June and July 2002. Tasks completed included: installation of protective concrete structures around piezometers and Barrier Wall Extraction System (BWES) extraction trench cleanouts, raising the manholes at extraction wells EW-12 and EW-13 to extend above the final grade elevation, implementation of erosion controls, and repair of erosion damage to the interim clay layer.

3.2 SITE PREPARATION AND GRADING

Environmental Contractors of Illinois, Inc. (ECI), the subcontractor selected to install the Off-Site Area final engineered cover, mobilized to the Site beginning August 21, 2002. A kickoff construction meeting was held on August 22.

ECI prepared the existing clay surface for FML installation by removing erosion matting, as well as weeds, rocks, and any material or debris greater than two inches in diameter that might puncture the FML. The clay subbase was further smoothed and proof-rolled as needed to facilitate FML installation. The subbase was also slightly regraded in areas to improve surface water runoff. Approximately ten cubic yards of additional clay were imported from the Merrillville clay source and placed near in-situ soil vapor extraction (ISVE) well SVE-10 to improve drainage.

In addition, small (four inch) mounds of sand were placed around each ISVE well and groundwater monitoring well prior to FML installation to ensure water would not collect around the wells. Photograph 7 in Appendix B shows the placement of sand around the ISVE wells.

3.3 CONSTRUCTION OF ANCHOR TRENCH

An anchor trench was constructed along the southern and western perimeter of the FML Cover Area to secure the FML. ECI constructed the anchor trench section by section prior to FML installation, beginning with the southern edge of the FML Cover Area and continuing north.

In the Final Remedial Design Report, two anchor details are shown on Figure C-16. Detail C depicts anchoring the FML on the sides of FML Cover Area that lay inside the barrier wall at the north and east edges. Detail D depicts anchoring the FML over the barrier wall located at the south and west edges of the FML Cover Area. Because the southern and western edges

of the FML Cover Area were within 18 inches of the drainage swale (Swale 1) that runs along the south and west edge of the Site, the anchor method shown on Detail D was not feasible. Therefore, the anchor method shown in Detail C was selected and used around the entire perimeter of the FML Cover Area. A detail of this anchor trench is shown on Figure 3. Photograph 8 in Appendix B shows typical anchor trench excavation activities.

As the anchor trench was being excavated, soil that was observed to contain debris or other visual indications of potential contamination was separated from the rest of the excavated material and stockpiled on plastic sheeting. Photograph 9 in Appendix B shows the procedure for handling debris excavated from the anchor trench. Once the FML had been placed in the trench, the stockpiled material was placed back in the trench with the material containing debris below the clay. Any debris that could potentially damage the FML was not placed back into the trench. Instead, this debris was transported to the On-Site Area and placed under the SBPA interim engineered cover. Photograph 10 in Appendix B shows the replacement of clay into the anchor trench.

The replacement of trench material was done so that the material containing debris was covered by at least 12 inches of clay. Because of the potential damage to the FML, a heavy compactor could not be used to compact the clay placed in the anchor trench. Therefore, the compaction standard of 95% of maximum dry density may not have been consistently achieved. Instead, low ground-pressure equipment was used to compact the clay placed in the anchor trench. This provided the compaction necessary to prevent erosion in the trench areas.

Trench corners were rounded to avoid sharp bends in the FML. Loose soil, sharp edged rocks larger than six inches in diameter, and any other debris that could damage the FML was removed from the surfaces of the trench.

At the locations where the barrier wall extended to the ground surface or relatively close to it, visual confirmation was used to ensure that the anchor trench was outside of the barrier wall. In areas where the barrier wall could not be seen, the survey of the anchor trench was compared to the as-built documentation from the barrier wall installation. In most locations, this comparison was sufficient to confirm that the anchor trench was outside of the barrier wall. Due to limitations in the precision of the barrier wall as-built documentation, this could not be confirmed at a few locations. However, in these cases, the clay component of the cover extends to the site perimeter fence. The barrier wall was installed within the perimeter fence, therefore while the FML may not extend over the barrier wall at all locations, the clay component of the cover system does. Because the perimeter of the barrier wall is not subject to ISVE treatment, the clay cover was considered to be sufficient to meet the intent of the cover at non-ISVE locations.

3.4 TEST PAD CONSTRUCTION

Prior to full-scale installation of FML material, ECI constructed a test pad to verify that the proposed construction equipment and methods used to place the root zone and topsoil material would not damage the FML. The test fill area was the width of one roll of FML, 23 feet wide and 65 feet long. This size allowed the construction equipment to reach the maximum operating speed of eight miles per hour (mph) operating speed over a minimum length of 25 feet.

The test fill was divided into two sections lengthwise. One half consisted of, from bottom to top, 12 inches of compacted clay (already in place), FML, 12 inches of root zone, and six inches of topsoil. This simulated the actual construction of the final engineered FML. The other half of the test fill consisted of, from bottom to top, 12 inches of compacted clay (already in place), FML, and 36 inches of root zone. This simulated the 36-inch thick temporary vehicle roads that were used by the dump trucks to place imported material across the Site.

A fully-loaded off-road dump truck was run back and forth across the 36-inch thick section of the test pad several times. A low-ground-pressure bulldozer was operated back and forth across the 18-inch thick section several times. These were the heaviest pieces of equipment to be used on each section of the Site. After the equipment ran over the test fill sections, a 20-foot by 20-foot section of the FML was exposed on the 18-inch thick section and a 20-foot by 10-foot section was exposed on the 36-inch thick section. ECI and MWH personnel visually inspected each section for damage to the FML. No evidence of damage was noted, indicating that the proposed construction activities could be performed without causing adverse effects to the FML.

After the low-ground-pressure bulldozer had run back and forth across the 18-inch thick section of soil multiple times, compaction and moisture testing was performed by K&S Engineers, Inc. (K&S). These results of the seven samples collected indicated the compaction levels could be expected during installation of the final cover. Results are included in Table 3 and Appendix D. Details regarding geotechnical testing of the soil materials used in the test pad and the final cover are contained in Section 5 of this report.

Photographs 11 and 12 in Appendix B show the preparation of the test pad.

3.5 FLEXIBLE MEMBRANE LINER INSTALLATION

Mid-America Lining (MAL), the subcontractor selected by ECI to install the FML in the Off-Site Area, mobilized on September 4. MAL and ECI confirmed that the subbase was satisfactory for placement of the FML. MAL began FML installation on September 5 and completed installation on September 7. Final extrusion welding and quality control testing was completed on September 10. MAL demobilized on September 11.

The FML was deployed using a specially fabricated roll-holder attached to a front-end loader. Adjacent pieces of FML were overlapped six inches for optimal weld during installation. The seam area was cleaned of dust, dirt, and foreign material prior to and during seaming. The seams were then welded using double hot wedge thermal fusion methods. After completion of seaming, each weld was non-destructively tested either by pressurizing the seam (for fusion welds) or by vacuum box method (for extrusion welds).

In addition to the non-destructive seam testing, destructive seam samples were collected every 500 feet of seam and sent to a third party laboratory for seam peel and shear testing. Areas where destructive testing samples were collected were patched and seamed using extrusion welds. Patches consisted of pieces of FML with rounded corners that extended a minimum of six inches beyond the edge of defects or destructive sample areas. Tears, holes, and blisters were repaired with patches as needed. Minor localized flaws were repaired by spot welding or seaming.

In areas where penetrations to the FML were required, such as ISVE wells, piezometers, and extraction wells, an "x" was cut in the FML so that the FML could be placed over the well or piezometer. A neoprene gasket was placed on the riser pipe and a boot made of FML material was extrusion welded to the gasket. An FML skirt was then welded to the boot and to the FML. A stainless steel clamp was then fastened over the neoprene gasket to ensure the seal at the top of the boot. A detail of those penetrations is shown on Figure 3. The penetrations are also shown in Photograph 18 in Appendix B.

Figure 4 shows the liner extents, including seam and testing locations. Factory test records for FML material are included in Appendix E. Field Test Records for FML installation are included in Appendix F, including non-destructive and destructive test logs and repair logs. Appendix F also contains the panel placement log and panel seaming form.

Photographs 13 through 25 in Appendix B show the various FML installation activities.

3.6 ROOT ZONE MATERIAL PLACEMENT

Root zone material placement over the completed FML began on September 9. The root zone was placed in one 12-inch lift. Original plans specified that the root zone would be placed and compacted in six-inch lifts. However, the placement of the root zone was conducted in one 12-inch lift because of concerns that moving heavy equipment across only six inches of material may damage the FML. The thickness of the root zone material (and subsequently the topsoil material) was typically less than 12-inches along the edge of the cover because the cover had to be tapered down to meet the elevation of the drainage swale to the west and south.

ECI began root zone placement by using the wetland sand material (Material Number 1) from the construction of the wetland pond during 2001 that was stockpiled in the Off-Site Area from the construction of the wetland pond during 2001. The stockpile area is shown on Figure 1. When all the material from this stockpile was placed, approximately 4,355 cubic

yards, root zone material was imported from a borrow source in Merrillville, Indiana (Material Number 2) until that source was also exhausted. The Merrillville source accounted for approximately 5,115 cubic yards of material. Finally, ECI imported approximately 4,162 cubic yards of material from a borrow source in Griffith, Indiana (Material Number 3). ECI completed placement of root zone material over the FML on September 26. Compaction and moisture testing was completed on October 1. Photographs 26 through 30 show the activities involved with the root zone placement.

Low-ground-pressure equipment was used to compact the soil in order to minimize potential damage to the FML. The initial minimum compaction target was 90 percent of maximum dry density. However, after reviewing the compaction data from the test pad and initial field compaction, it was determined that the low ground pressure equipment could not achieve 90 percent compaction consistently at the site. Therefore, the compaction target was lowered to 80 percent of maximum dry density. The 80 percent compaction target was selected because it could be achieved with the low ground pressure equipment without an increased potential for damaging the FML but would not significantly impact the ability of the root zone material to support root growth or minimize erosion. The root zone material was placed with an allowable moisture range from optimum moisture minus 2% to optimum moisture plus 2%. When the root zone material was in this range, it could be easily placed and compacted without clumping or pumping.

Chemical analytical testing of borrow source materials is discussed in Section 5.1.1 and results are included in Appendix G and summarized in Table 4. The geotechnical data for the three soil sources and the in-place density tests are included in Appendices H and I, respectively, and summarized in Table 5. In Appendices H and I, Material Number 1 is referred to as K&S Reference Number 1, Material Number 2 is referred to as K&S Reference Number 2, and Material Number 3 is referred to as K&S Reference Number 4. Figure 5 shows the root zone compaction and moisture testing locations and the results are summarized in Table 6. Contours of the top of placed root zone material are shown on Figure 6.

3.7 TOPSOIL PLACEMENT AND SEEDING

ECI began topsoil placement on September 26 in areas where the completed root zone had been installed and tested successfully. ECI imported approximately 7,931 cubic yards of Material Number 3 for use as topsoil. This material was the same borrow source material imported and installed as root zone (see Section 3.6).

Six inches of topsoil material were spread across the FML Cover Area in one lift. Contours of the top of placed topsoil material (the completed as-built of the site), including the new access road (discussed in Section 3.8), are shown on Figure 7. Topsoil placement was completed on October 2. The compaction requirement for the topsoil was the same as that of the root zone material and is discussed in Section 3.6. Photograph 31 in Appendix B shows the placement and spreading of the top soil material.

Cooling Landscape Contractors was selected to seed the topsoil of the FML Cover Area and former excavated wetland material stockpile area. Grass seed was placed on October 3 using a small tractor. Straw was then placed over the seed areas to protect the seed and minimize erosion. The Class R seed used met Indiana Department of Transportation Standard Specifications. Photograph 32 in Appendix B shows the site after it has been seeded. A copy of the specifications for the seed that was used in the cover area is included in Appendix K.

After construction was completed, the data from the surveys was reviewed and indicated that 18 areas in the cover area did meet the thickness requirements for the topsoil. Therefore, on August 18 and 19, 2003, ECI was on-site placing additional topsoil in these areas. The ground in each area was scarified, additional topsoil provided by Austgen Equipment from the Material Number 3 borrow source was placed and compacted with a seeding tractor, seed was applied, and straw was placed. Surveys were completed before and after the work to confirm that a sufficient amount of topsoil had been placed. The survey elevations and contours on Figure 7 document the final elevations. Photographs 35 through 38 show the placement of additional topsoil in the indicated areas.

Additional topsoil was not placed at six locations where the thicknesses ranged from 1.35 to 1.38 feet. These locations would have required less than 2 inches of additional soil to meet the required cover thickness. Since vegetation had already taken hold at these locations, MWH determined that the process of adding the additional soil would have caused an increased potential for erosion. Therefore, MWH determined that the thicknesses in these areas were sufficient and no additional soil was added.

Topsoil and grass currently cover the entire Off-Site Area with the exception of the ISVE Blower Shed, access road, detention pond, rip-rap lined perimeter drainage swales, and stockpiled wood chips and logs located in the northeast and northwest portions of the Site.

3.8 ACCESS ROAD INSTALLATION

A temporary access road was constructed in September 2001 to provide access to the Off-Site Area ISVE blower building and well field. This temporary access road consisted of a geotextile fabric with nine inches of gravel. The temporary road was removed prior to the PCB-impacted material relocation activities in July 2002 and the gravel was stockpiled for use in the permanent access road.

The permanent access road was installed on October 2, 2002 after the completion of the final engineered cover, as shown in Figure 7. A cross-section of road is shown on Figure 3. The road connects the southeast gate of the Off-Site Area to the ISVE blower shed. The permanent access road was constructed in the same way as the temporary access road, consisting of a geotextile fabric with nine inches of gravel.

3.9 REPAIR TO SOIL VAPOR EXTRACTION WELL SVE-38

During grading activities, soil vapor extraction well SVE-38 was struck by a piece of heavy equipment. Upon inspection, it was noted that only the well casing was damaged and the saddle and appurtenances were still intact. Because the casing was damaged above the connection point of the riser to the saddle, it was replaced. Once the casing was replaced, it was vacuum tested to ensure that neither the casing nor saddle were leaking. After this was confirmed, the saddle was covered with bentonite and a new FML boot and skirt were installed on the well on October 10, 2002. Seams were successfully vacuum box tested in accordance with the procedures detailed in Section 5.3.3.2 of this report. Photographs 33 and 34 in Appendix B show the seam repairs performed at SVE-38.

4.0 SUMMARY OF FINAL COVER INSTALLATION ACTIVITIES IN SOIL COVER AREA

4.1 CLAY PLACEMENT

The Soil Cover Area is the portion of the Off-Site Area that is not directly treated by the ISVE system and is not covered by the FML. The cover for this area consists of 18 inches of compacted clay covered with 6 inches of topsoil and vegetation.

Koester Environmental Services (KES) installed the interim engineered cover in the Off-Site Area in 2001. KES installed 12 inches of clay in the FML Cover Area and 18 inches of clay in the Soil Cover Area. The clay was installed in six-inch lifts and compacted to at least 95 percent of maximum density with a moisture content between optimum moisture and optimum moisture plus 2 percent.

The 18 inches of clay placed in the Soil Cover Area met the clay thickness requirement of the Final Remedial Design Report for the final engineered cover in the non-ISVE area. Additional information regarding clay placement in the Soil Cover Area, including geotechnical and chemical analytical data from imported clay, clay compaction test results, and clay thickness information derived from survey data can be found in the Off-Site Area Interim Engineered Cover CCR (MWH, February 2003).

4.2 TOPSOIL AND GRASS SEED PLACEMENT

After installing 18 inches of clay in the Soil Cover Area of the Off-Site Area, KES covered the compacted clay with topsoil imported from the Material Number 3 borrow source. The topsoil was installed to a depth of six inches during the end of August and the beginning of September 2001. Topsoil was not placed in the FML Cover Area at this time.

Slusser Company planted grass seed across the topsoil using a hydroseeding method. Grass seed was spread across approximately 55 percent of the Soil Cover Area. The remaining portion of the Soil Cover Area, the eastern edge of the Site, was used to stockpile soil from the construction of the pond during the wetland restoration in September 2001. This soil was used as the initial root zone material for the final FML cover system.

Additional information regarding topsoil and grass seed placement in the Soil Cover Area, including chemical analytical data from imported topsoil, can be found in the Off-Site Area Interim Engineered Cover CCR (MWH, February 2003).

5.0 MATERIAL TESTING AND QUALITY CONFIRMATION

5.1 IMPORTED SOIL MATERIAL TESTING

5.1.1 Chemical Analytical Testing

Four different soil sources were used during the completion of the final engineered cover during 2002. One source provided clay material and the other three sources provided root zone and topsoil material.

Clay was imported for the PCB-impacted material relocation activities (former Swale 5 area) from the same borrow source in Merrillville, Indiana used during the installation of the interim cover in 2001. The soil used for the root zone material came from three sources: the Material Number 1 stockpile, imported from the Material Number 2 source, and imported from the Material Number 3 source. Material Number 3 was also used as topsoil in the FML Cover Area.

5.1.1.1 Clay Imported from Merrillville Source

Chemical analysis of the clay imported from the Merrillville clay borrow source during the interim cover activities of 2001 indicated that it did not contain any compounds above the United States Environmental Protection Agency (Region IX) Preliminary Remediation Goals (PRG) or the Indiana Department of Environmental Management's (IDEM's) Risk-Integrated System of Closure (RISC) default values. Therefore, the clay was not analyzed again during the 2002 construction activities. The Off-Site Area Interim Engineered Cover CCR (MWH, February 2003) further discusses this chemical analysis.

5.1.1.2 Root Zone Used From Wetland Restoration

In August 2001, PCB-impacted soils were excavated from a wetlands area located northwest of the Off-Site Area. A portion of this work included the restoration of the wetland area after the PCB-impacted material was removed. The area was restored by constructing an open-pond. Samples of the soils excavated during the pond construction, confirmed that the soil was below the PCB cleanup objective of one ppm, so they were hauled to the Off-Site Area and stockpiled for future use. Because this soil met the PCB cleanup objective and was not imported material, no further analysis was performed.

5.1.1.3 Root Zone Imported from Merrillville Source

The root zone material imported from the Merrillville (Material Number 2) source was sampled on July 18, 2002 for chemical analysis and analyzed for Pesticides/PCBs, VOCs, semivolatile organic compounds (SVOCs), and inorganics. The laboratory data sheets for this sample are contained in Appendix G and the results and screening comparisons are summarized in Table 4. The contractor's certification letter is also included in Appendix G.

The Final Remedial Design Report, including Construction Quality Assurance Plan (CQAP) and Performance Standard Verification Plan (PSVP), does not outline standards to be used to determine acceptable import material. Therefore, MWH used the U.S. EPA Region IX PRGs

and IDEM RISC Nonresidential Default Closure Levels as guidelines. Material Number 2 was found to meet these requirements with the following exceptions:

- The typical laboratory reporting limits for seven semi-volatile organic compounds (2,4-dinitrophenol, 2-nitroaniline, 3,3'-dichlorobenzidine, benzidine, bis-(2-chloroethyl) ether, bis(2-chloroisopropyl)ether, and N-nitrosodi-n-propylamine) are higher than the lower of the two guideline values used. However, because the reporting limits for each of these seven compounds is lower than one of the guideline values, the clay was found to be acceptable for on-site use.
- An arsenic concentration of 6.8 milligrams per kilogram [mg/kg] was detected in Material Number 2. This concentration met the IDEM RISC level of 20 mg/kg but exceeded the Region IX PRG of 2.7 mg/kg. However, comparison of this arsenic detection with the regional (Greater Chicago Metropolitan Area) background range (1.1 to 24 mg/kg) determined in a study published by the Illinois Environmental Protection Agency (IEPA) in 1994 indicates that this data is well below the upper limit of the published regional background concentration range. The findings of the IEPA study, titled A Summary of Selected Background Conditions for Inorganics in Soil, are based upon analysis of the Greater Chicago Metropolitan Area. The IEPA study was considered because no similar study or background arsenic values have been published specifically for Indiana.

5.1.1.4 Root Zone/Topsoil Imported from Griffith Source

During the installation of the final engineered cover in 2002, material was imported from the Material Number 3 source for use as root zone and soil. Samples of Material Number 3 were collected and analyzed in 2001 for use as topsoil during the installation of the Off-Site Area interim engineered cover (see Off-Site Area Interim Engineered Cover CCR for more details). Results of the chemical analysis performed in 2001 indicated that compounds were below the Region IX PRG and/or RISC values. Therefore, Material Number 3 was not reanalyzed during the 2002 construction activities.

5.1.2 Geotechnical Testing

The imported clay was analyzed for geotechnical characteristics in 2001, and data has been included in the Off-Site Area Interim Engineered Cover CCR (MWH, February 2003). The imported soils from both the Merrillville and Griffith sources were analyzed for geotechnical characteristics including particle size, maximum density, and optimum moisture. The geotechnical classification samples were collected at a frequency of 1 per 5,000 cubic yards of material delivered to the site. The wetland sand material was only analyzed for maximum density and optimum moisture. K&S performed these geotechnical analyses and the materials were found to be acceptable. The geotechnical testing reports are included in Appendix H and the results are summarized in Table 5.

K&S also conducted in-place soil density testing of the installed root zone and topsoil materials. Compacted soil was tested to ensure that it was compacted to at least 80 percent of maximum dry density at optimum moisture +/- 2 percent. An exception to this was for

moisture in Material Number 1 for which a wider range of moisture contents in sand was acceptable for compaction.

In-place soil testing was conducted with a nuclear density testing unit at a frequency of 8 tests per acre per lift. The field quality assurance test results were compared to the maximum dry density and optimum moisture as determined in the laboratory. If either the density or moisture requirements were not met, the non-passing areas were reworked as necessary and retested until the criteria were met. As Table 6 shows, at the project's completion all locations met the compaction and moisture requirements. In addition, sand cone method tests were performed to verify the accuracy of the nuclear density testing unit. The results of the sand cone tests are summarized in Table 7. Test results are also included in Appendix I.

5.1.3 Visual Inspection

The imported material, including clay, root zone, and topsoil, and non-imported Material Number 1 was visually inspected for grass, roots, brush, other organic material, debris, and refuse. The material was found to be suitable for cover material. Discovered debris, such as small pieces of wood or concrete, were removed prior to placement.

5.2 FACTORY TESTING OF FML MATERIAL

After being manufactured, each roll of FML material was tested in the factory for thickness, percentage carbon black content, tear resistance, puncture resistance, tensile strength at break, elongation at break, carbon black dispersion, and density. Copies of test results were included with each roll delivered to the Site. These test results are included in Appendix E. MWH reviewed and approved the test results prior to FML installation. Several of the rolls delivered to the Site had a tear resistance that was slightly less than the requirements of the specifications. Because the tear resistance was only slightly less, MWH deemed these rolls acceptable. Also several rolls exceeded the specification for the density of resin but were also considered acceptable.

5.3 FIELD TESTING OF FML

5.3.1 Visual Observation

MWH personnel visually examined the FML rolls upon delivery for evidence of damage. No damage was observed upon delivery or during installation. In addition, prior to covering the FML with root zone material, the FML material and all seams were visually inspected by MWH, ECI, and MAL for defects, holes, or damage due to weather conditions or construction activities. No deficiencies were noted.

5.3.2 Trial Weld Testing

Trial welds were made on test strips of excess FML under field conditions to verify that seaming methods were adequate. Prior to beginning production work each day and after every four hours of production work, trial welds were constructed and tested by each person

performing seaming work and each piece of seaming equipment used that day. One sample was obtained from each trial seam. The sample was at least 36 inches long by 20 inches wide with the seam centered lengthwise. Ten random specimens were cut one inch wide from the sample. Five seam specimens were tested for shear strength and five for peel adhesion using an approved quantitative tensiometer.

The minimum permitted shear strength was 72 pounds per inch of width (lbs./in. width). The minimum permitted peel adhesion strength was 60 lbs./in. width. To be acceptable, four out of five replicate test specimens were required to meet the specified seam strength requirements. No trial seam tests failed during the completion of this project. A copy of the trial weld log is included in Appendix F.

5.3.3 Fusion and Extrusion Weld Nondestructive Testing

5.3.3.1 Pressure Testing of Fusion Welds

Field fusion seams were nondestructively tested over their full length to insure seam continuity, in accordance with ASTM D5820 and MAL's approved quality control manual. The fusion seams were sealed at both ends and pressurized to at least 25 pounds per square inch (psi) (typically 30 psi). The seam pressure was not permitted to vary more than four psi over a five-minute period to be considered in compliance. Seam testing was performed as the seaming work progressed, rather than at the completion of field seaming. The non destructive test log in Appendix F documents that all fusion seams were successfully tested.

5.3.3.2 Vacuum Testing of Extrusion Welds

Field extrusion welds were nondestructively tested using the vacuum box method to insure seam continuity. The vacuum box method consisted of wiping soapy water over the seam to be tested and placing a clear plastic box, approximately eight-inches by 16-inches, over the seam. This box was then subjected to a low vacuum and observed for the presence of large air bubbles. The presence of large air bubbles would indicate a seam deficiency that would leak air under a vacuum. No deficiencies were observed during the testing of extrusion welds. The non-destructive test log in Appendix F documents that all extrusion welds were successfully tested.

5.3.4 Fusion and Extrusion Weld Destructive Testing

Seam samples for destructive testing were cut from the installed FML every 500 linear feet of welding at locations specified by MWH. One sample per 500 linear feet was utilized because it is MAL's typical quality control frequency.

Destructive seam samples were a minimum of 12 inches wide by 42 inches long with the seam centered lengthwise. Each sample was cut into three equal pieces with one piece retained by MAL, one piece sent to TRI Environmental, Inc. (TRI), the third party independent laboratory, and the remaining piece given to MWH for quality assurance testing and a permanent record. Each destructive sample was numbered and cross-referenced to the following information included in the field log: seam number, panel/sheet number (same as seam number), date cut, seaming machine used, and name of person performing the seaming.

Ten one-inch wide replicate specimens were cut from MAL's portion of each destructive sample. Five specimens were tested for shear strength and five for peel adhesion using an approved field quantitative tensiometer, and in accordance with ASTM D4437. To be acceptable, four out of five replicate test specimens were required to meet the specified seam strength requirements. If the field tests passed, five specimens were tested by TRI in the laboratory for shear strength and five for peel adhesion in accordance with ASTM D6392. To be acceptable, four out of five replicate test specimens were required to meet the specified seam strength requirements. If the field or laboratory tests failed, the seam was to be repaired. Destructive seam sample holes were patched the same day they were cut.

A total of 30 destructive samples were collected: 27 destructive samples were collected and tested from fusion welds and three destructive samples were collected and tested from extrusion welds. The destructive tests were tested in the same manner as the trial welds for shear strength and peel adhesion. The minimum permitted shear strength was 72 lbs./in. width. The minimum permitted peel adhesion strength was 60 lbs./in. width. Both field and laboratory destructive test results are included in Appendix F.

All field destructive tests met the shear and peel requirements. All laboratory destructive tests met the shear and peel requirements, with the exception of destructive sample DS-29. This extrusion weld failed destructive testing and was successfully repaired and retested following the method discussed below.

5.3.5 Repairs and Additional Testing

Every location where a destructive sample was removed, the FML was repaired and patched using extrusion welding. Similar repairs were performed at butt seam locations and any other location where a repair was deemed necessary. Each repair location was nondestructively tested using a vacuum box (see Section 5.3.3.2). Appendix F contains the repair log for this project.

If a seam failed destructive seam testing, additional testing was performed. The seaming path was retraced to an intermediate location ten feet on each side of the failed seam location. At each location, a 12 by 18-inch minimum size seam sample was taken for two additional shear strength and two additional peel adhesion tests. If these tests passed, then the remaining seam sample portion was sent to the laboratory TRI for five shear strength and five peel adhesion tests. To be acceptable, four out of five replicate test specimens were required to meet specified seam strength requirements. If these laboratory tests passed, then the seam was repaired between the passing test location and the original failed location. If field or laboratory tests failed, then the process was to be repeated. After cap stripping, the entire cap stripped seam was nondestructively tested using the vacuum box method.

5.4 EVALUATION OF CONSTRUCTION MATERIALS

MWH reviewed and approved the product specifications for the geotextile fabric used in the construction of the access road prior to installation. MWH found the mass, thickness, apparent opening size, grab tensile strength, and puncture strength of the geotextile fabric to

be satisfactory. During installation MWH visually inspected the geotextile fabric and did not discover any deficiencies. A copy of the manufacturer's cut-sheet for the geotextile fabric is included in Appendix K.

5.5 SURVEYING

The site was surveyed before, during, and after the placement of the final FML cover system to confirm that the minimum cover thicknesses were obtained. These surveys were used to develop final "as-built" drawings. Surveying was performed by Duneland Surveyors and certified by an Indiana-licensed surveyor. Table 8 summarizes the depth of root zone and topsoil material placed. It should be noted that the survey data indicates that multiple areas along the drainage swale on the west and south ends of the site have "negative" thicknesses. The Duneland survey of the subbase was performed prior to clearing and grubbing of the site and regrading of eroded soil that had collected at the edge of the drainage ditch. No additional survey was performed once these activities were completed. Due to the state of the cover along the drainage ditch prior to these activities, it is possible that clearing and grubbing of vegetation and regrading soil would account for significant changes in elevation as indicated on Table 8. The "negative" thicknesses should not provide a problem to the cover because visual inspection indicates that there is sufficient soil cover in these areas to provide adequate protection of the FML. In addition, the areas of "negative" thicknesses are all on the edge of the cover where vehicle traffic is restricted.

The survey also indicates that the thickness of the root zone and top soil materials at the south and west edges of the cover area was less than 18 inches. Because the cover needed to be graded into the swale running along these edges (Swale 1), the edges of the cover are tapered and the thickness of the root zone material and the topsoil material is subsequently less than 12-inches along the edge.

After completion of the final engineered cover, the total in-place root zone for the FML Cover Area was 12 inches or greater and the total in-place topsoil was six-inches or greater with the exception of the six locations discussed in Section 3.7. Material thicknesses for the Soil Cover Area, as reported in the Off-Site Area Interim Engineered Cover CCR, also meet the requirements of the Final Remedial Design Report.

Arc Design was used to perform the survey of the 18 areas that were determined to have deficient cover thicknesses. Arc Design surveyed the deficient areas before and after additional soil was placed to ensure that sufficient soil was placed. In addition to the 18 deficient areas, Arc Design surveyed the entire cover area. The survey data collected by Arc Design was used to create the final contours for the site.

During the PCB-impacted material relocation activities MWH used a survey rod and transit to verify that the clay layer replaced over the area of Swale 5 was 12 inches thick or greater. In addition, MWH physically measured final clay thicknesses in this area to confirm that sufficient thicknesses were achieved. This confirmation was done by augering a small hole in the clay and using a tape measure to determine the actual thickness. This confirmation

was performed at eight locations and the average measured clay thickness was 12 to 12.25 inches as shown on Table 2. However, two measured thicknesses were less than 12 inches, one at 10 inches and the other at 11 inches. After the thickness at each location was measured, the clay was replaced and recompacted.

6.0 HEALTH AND SAFETY

6.1 RELOCATION OF PCB-IMPACTED MATERIAL

A kickoff health and safety meeting was held on July 23, 2002 prior to beginning the work of transporting the PCB-impacted material. Daily tailgate health and safety meetings were conducted throughout the relocation activities. During these meetings, the importance of safe work practices, especially when working with heavy equipment, was regularly emphasized.

Work was conducted in Level D personal protection equipment (PPE), which included safety shoes, hard hats, and safety glasses. Latex overboots were worn when workers needed to access the areas with exposed impacted material. Because the contaminants of concern, PCBs, did not pose an inhalation hazard, air monitoring was not performed during the project.

The temporary access road was created in the former Fire Pond Area using geotextile fabric. This road allowed dump trucks to back up to the stockpile without potentially tracking excess material away from the work area. Trucks transporting excavated material were also visually inspected and cleaned off as necessary to prevent the tracking of excavated material. Equipment was decontaminated by pressure washing as needed and at the completion of the job.

6.2 FINAL COVER INSTALLATION ACTIVITIES

A kickoff health and safety meeting for the final cover installation was conducted on August 22, 2002 for all active construction workers from ECI. A second kickoff health and safety meeting was conducted on September 4, 2002 for MAL personnel. Daily tailgate health and safety meetings were conducted throughout the project. During these meetings, the importance of safe work practices, especially when working with heavy equipment, knives, and welding equipment, was regularly emphasized. Emphasis was also placed upon communication between ECI and MAL crew members. Due to the fact that many members of the MAL crew were not fluent English speakers, steps were taken to ensure that the topics discussed during all health and safety meetings were translated. Also, members of the English-speaking MAL crew were designated to coordinate the non-English crew in the case of an emergency.

Work was conducted in Level D PPE, which included safety shoes, hard hats, and safety glasses with the exception of the MAL liner installer crew. The MAL crew was allowed to wear tennis shoes instead of safety shoes when working on the FML to reduce the potential for damage to the FML. During the excavation of the anchor trench around the perimeter of the FML Cover Area, air monitoring was conducted regularly due to the potential VOCs present. These air monitoring results, included in Appendix J, dictated the proper PPE for this work in accordance with the site health and safety plan. Air monitoring results were all less than one ppm. Therefore, trenching work was also performed in Level D PPE.

During the repair of soil vapor extraction well SVE-38, air monitoring was conducted in the breathing space and vicinity around the well when the well was open. Level C air respirators were worn as a precaution during the well repair when the well was open to the atmosphere.

A health and safety meeting was also conducted on October 3 with the Cooling Company, the grass seed installation crew scheduled to perform work in the Off-Site Area.

7.0 SUMMARY

Interim and final engineered covers were placed over the Off-Site Area during 2001 and 2002. As described in the Final Remedial Design Report, these covers were constructed to eliminate potential direct contact with VOC- and PCB-contaminated soils (and lead-contaminated soils in the K-P Area) and eliminate potential worker contact with VOC-contaminated groundwater. The covers were also installed to reduce the potential for contaminant migration to groundwater by reducing infiltration into these areas, and to provide a surface seal for the ISVE system to minimize potential short-circuiting and maximize the capture of VOC vapors. Finally, the covers reduce the stormwater infiltration into the area inside the barrier wall. This reduces the amount of groundwater that needs to be extracted and treated by the GWTP during ISVE implementation and long-term operation of the BWES.

During 2001, a clay interim cover was placed over the entire Off-Site Area and a final cover was placed over portions of the Off-Site Area, as documented in the Off-Site Area Interim Engineered Cover CCR (MWH, February 2003). During 2002, the final cover was completed across the remainder of the Off-Site Area, including the installation of an FML cover.

8.0 REFERENCES

Remedial Investigation Report (Warzyn, Inc., June 1991).

A Summary of Selected Background Conditions for Inorganics in Soil (Illinois Environmental Protection Agency, August 1994).

Site Safety Plan (Montgomery Watson, January 1996).

Final Remedial Design Report (Montgomery Watson, August 1999).

Quality Assurance Project Plan (QAPP) for the American Chemical Service, Inc. (ACS) NPL Site in Griffith, Indiana (MWH, November 2001).

Work Plan for the Off-Site Containment Area Engineered Cover (ECI, August 2002)

Construction Quality Assurance Plan for the Off-Site Containment Area Engineered Cover (ECI, August 2002)

Health and Safety Plan for the Off-Site Containment Area Engineered Cover (ECI, August 2002)

Construction Completion Report, Off-Site Containment Area Engineered Cover, American Chemical Services, Inc. (ECI, October 2003)

Final PCB-Impacted Soil Excavation CCR (MWH, November 2002).

Final Off-Site Area Interim Engineered Cover Construction Completion Report (MWH, February 2003).

TMK/JDP/jmf/RAA/jmf/PJV/jmf J:\209\0601 ACS\0119 Final Off-Site Cover\6010119a014.doc

TABLES

Table 1 Clay Cover Moisture and Compaction Test Results Preparation for Off-Site Final Engineered Cover ACS, NPL Site Griffith, Indiana

Sampling	Date	Lift	Probe Depth	Dry Density	Moisture	Proctor	%		Specification,	
Location	Tested	Number ¹	(inches)	(pcf)	(%)	(pcf)	Compaction	% Moisture	% Proctor	Pass/ Fail
1	7/26/2002	1	6_	109.3	17.9	115.0	95.0	17.0	95.0	Pass
2	7/26/2002	1	6	109.4	18.3	115.0	95.1	17.0	95.0	Pass
3	7/29/2002	1	6	109.4	18.0	115.0	95.1	17.0	95.0	Pass
4	7/29/2002	1	6	109.3	18.6	115.0	95.1	17.0	95.0	Pass
5	7/29/2002	1	6	110.4	17.3	115.0	96.0	17.0	95.0	Pass
6	7/29/2002	1	6	109.6	18.3	115.0	95.3	17.0	95.0	Pass
7	7/29/2002	1	6	110.1	17.0	115.0	95.7	17.0	95.0	Pass
8	7/29/2002	1	6	109.4	18.0	115.0	95.2	17.0	95.0	Pass
9	7/29/2002	1	6	110.6	17.6	115.0	96.2	17.0	95.0	Pass
10	7/29/2002	1	6	109.7	18.0	115.0	95.4	17.0	95.0	Pass
11	7/29/2002	1	6	109.3	18.2	115.0	95.0	17.0	95.0	Pass
12	7/31/2002	1	6	109.3	17.6	115.0	95.0	17.0	95.0	Pass
13	7/31/2002	l	6	109.4	18.0	115.0	95.1	17.0	95.0	Pass
14	7/31/2002	1	6	110.1	17.5	115.0	95.7	17.0	95.0	Pass
15	7/31/2002	1	6	109.5	17.2	115.0	95.2	17.0	95.0	Pass
16	7/31/2002	1	6	110.0	18.5	115.0	95.6	17.0	95.0	Pass
17	7/31/2002	1	6	109.9	18.0	115.0	95.5	17.0	95.0	Pass
18	7/31/2002	2	6	109.6	17.0	115.0	95.3	17.0	95.0	Pass
19	7/31/2002	2	6	109.9	18.7	115.0	95.5	17.0	95.0	Pass
20	7/31/2002	2	6	109.3	18.0	115.0	95.0	17.0	95.0	Pass
21	7/31/2002	2	6	109.2	17.6	115.0	95.0	17.0	95.0	Pass
22	7/31/2002	2	6	109.3	18.0	115.0	95.0	17.0	95.0	Pass
23	7/31/2002	2	6	110.6	17.4	115.0	96.1	17.0	95.0	Pass
24	7/31/2002	2	6	109.6	18.9	115.0	95.3	17.0	95.0	Pass
25	7/31/2002	2	6	109.2	17.0	115.0	95.0	17.0	95.0	Pass
26	7/31/2002	2	6	113.0	17.1	115.0	98.2	17.0	95.0	Pass
27	7/31/2002	2	6	109.3	18.1	115.0	95.0	17.0	95.0	Pass
28	7/31/2002	2	6	111.4	17.6	115.0	96.8	17.0	95.0	Pass
30 ²	7/31/2002	2	6	112.1	17.4	115.0	97.4	17.0	95.0	Pass
31	7/31/2002	2	6	110.7	18.0	115.0	96.2	17.0	95.0	Pass
32	7/31/2002	2	6	109.4	19.2 ³	115.0	95.1	17.0	95.0	Pass
33	7/31/2002	2	6	109.5	17.0	115.0	95.2	17.0	95.0	Pass

Notes:

- 1. Lift 1 was placed first. Lift 2 was placed second, on top of Lift 1.
- 2. No test was taken at sampling location 29.
- 3. Although this moisture result exceeded the specification range, it was determined that sufficient compaction was obtained to meet the hydraulic conductivity requirements of the project and further working of the soil would not be beneficial to reduce the moisture content by 0.2%.

Tests were conducted by Great Lakes Soil & Environmental Consultants using a nuclear density testing unit.

Tests which did not yield passing results were not reported in this table. Instead, the clay was reworked and retested until a passing result was obtained.

Table 2
Measured Clay Thickness
Preparation for Off-Site Final Engineered Cover
ACS, NPL Site
Griffith, Indiana

Sampling Location	Date Tested	Measurement of Clay Thickness (inches)
18	7/31/2002	10
18 retest ¹	7/31/2002	12
22	7/31/2002	12.5
24	7/31/2002	13.5
25	7/31/2002	12
	Average Thickness	12
26	7/31/2002	12.5
27	7/31/2002	11
30	7/31/2002	12.5
33	7/31/2002	13
	Average Thickness	12.25

Note:

- 1. An additional test was taken 5 feet east of the initial test.
- 2. The sample locations are shown on Figure 1.

Table 3 Test Pad Moisture and Compaction Test Results ACS NPL Site Griffith, Indiana

Date	Location	Soil Material	Maximum Laboratory Density (pcf)	Optimum Moisture Content (%)	In-Place Dry Density (pcf)	In-Place Moisture (%)	Percent Compaction
09/04/02	10' N & 5' E of South West Corner	Material Number 3 - Topsoil	97.0	21.5	91.4	17.1	94.2%
09/04/02	20' N & 10' E of South West Corner	Material Number 3 - Topsoil	97.0	21.5	94.3	13 6	97.2%
09/04/02	30' N & 18' E of South West Corner	Material Number 3 - Topsoil	97.0	21.5	86.6	11.6	89 2%
09/04/02	15' N & 4' E of South West Corner	Material Number 1 - Root Zone	109.0	11.0	105.8	7 2	97.7%
09/04/02	25' N & 18' E of South West Corner	Material Number 1 - Root Zone	109.0] 11.0	106.3	7.4	97.5%
09/04/02	30' N & 16' E of South West Corner	Material Number 1 - Root Zone	109.0	11.0	105 8	9.1	97.0%
09/04/02	5' N & 15' E of South West Corner	Material Number 1 - Root Zone	109.0	11.0	109.6	9.4	100.0%

<u>Notes</u>

pcf - pounds per cubic foot

See Appendix D of this report for geotechnical testing results presented in this table.

Table 4
Chemical Analytical Data for
Merrillville Borrow Source Material
ACS NPL Site
Griffith, Indiana

	U.S.EPA Region	IDEM RISC	Sample		Merrillville So	ource
	1X Preliminary	Nonresidential	Collected		7/18/2002	
	Remediation	Default Closure				1
Analyte	Goals ¹	Levels ²	Units	ĺ	Result	Q
Volatile Organic Compound	S	A track to printe	1.44	10.5		
1,1,1-Trichloroethane	1,400,000	35,000	μg/Кg	<	5.0	U
1.1.2.2-Tetrachloroethane	900	110	µg/Кg	<	5.0	Ü
1,1,2-Trichloroethane	1.900	300	μg/Кg	<	5.0	U
1.1-Dichloroethane	2,100,000	58,000	μg/Кg	< -	5.0	U
1,1-Dichloroethene	120	58	μg/Кg	< <	5.0	U
1,2-Dichloroethane	760	150	µg/Кg	<	5.0	U
1,2-Dichloropropane	770	250	μg/Кg	<	5.0	Ü
2-Butanone	28,000,000	260.000	μg/Kg	<	10.0	Ü
2-Hexanone	NE	NE	μg/Kg	< < <	10.0	Ū
4-Methyl-2-Pentanone	2,900,000	39,000	μg/Kg	<	10.0	Ü
Acetone	6,200,000	41,000	μg/Kg	<	10.0	Ū
Benzene	1,500	670	μg/Kg	<	5.0	U
Bromodichloromethane	2,400	630	µg/Кg	<	5.0	Ū
Bromoform	310,000	2,700	μg/Kg	<	5.0	U
Bromomethane	13,000	NE	μg/Kg	<	10.0	Ū
Carbon Disulfide	720,000	82,000	μg/Kg	<	5.0	U
Carbon tetrachloride	530	290	μg/Kg	<	5.0	Ū
Chlorobenzene	540,000	27,000	μg/Kg	<	5.0	\overline{U}
Chloroethane	6,500	5,200	μg/Kg	<	10.0	Ü
Chloroform	520	1,200	μg/Kg	<	5.0	U
Chloromethane	2,700	NE	μg/Kg	<	10.0	_U
cis-1,2-Dichloroethene	150,000	5,800	μg/Kg	<	5.0	U
cis-1,3-Dichloropropene	NE	NE	μg/Kg	<	5.0	υ
Ethylbenzene	230,000	200.000	μg/Кg	<	5.0	U
m,p-Xylene	NE	NE	μg/Кg	<	5.0	Ū
Methylene chloride	21,000	1,800	μg/Kg	<	5.0	U
o-Xylene	NE	NE	μg/Kg	<	5.0	U
Styrene	1,700,000	720.000	μg/Kg	<	5.0	U
Tetrachloroethene	19,000	640	μg/Кg	<	5.0	Ū
Toluene	520,000	240,000	μg/Kg	<	5.0	U
trans-1,2-Dichloroethene	210,000	14,000	μg/Kg	<	5.0	υ
trans-1,3-Dichloropropene	NE	NE	μg/Kg	<	5.0	Ū
Trichloroethene	6,100	3,000	μg/Kg	<	5.0	Ū
Vinyl Acetate	1.400,000	430,000	μg/Kg	<	10.0	U
Vinyl chloride	830	13	μg/Kg	<	10.0	ΰ
Xylenes (total)	NE	NE `	μg/Kg	<	5.0	υ

Table 4
Chemical Analytical Data for
Merrillville Borrow Source Material
ACS NPL Site
Griffith, Indiana

[U.S.EPA Region	IDEM RISC	6		M	
	1	i	Sample	-	Merrillville So	urce
	IX Preliminary	Nonresidential	Collected	├	7/18/2002	
	Remediation	Default Closure				
Analyte	Goals ¹	Levels ²	Units	<u> </u>	Result	Q
Semi-Volatile Organic Comp				_		
1,2,4-Trichlorobenzene	3,000,000	77,000	μg/Kg	<u> </u>	330	U
1.2-Dichlorobenzene	370,000	270,000	μg/Kg	<u> </u>	330	Ü
1,3-Dichlorobenzene	52,000	1,800	μg/Kg	 <_	330	U
1,4-Dichlorobenzene	8,100	3,400	μg/Kg	<u> </u>	330	U
2,4,5-Trichlorophenol	88,000,000	690,000	μg/Кg	<	660	_ <u>U</u> _
2,4.6-Trichlorophenol	220,000	5,000	μg/Kg	<	330	<u>U</u>
2.4-Dichlorophenol	2,600,000	3,000	μg/Kg	<_	330	U
2,4-Dimethylphenol	18,000,000	25,000	μg/Kg	<	330	U
2,4-Dinitrophenol ³	1,800,000	820	μg/Kg	<	1,600	U
2,4-Dinitrotoluene	1,800,000	NE	μg/Kg	<	250	Ü
2,6-Dinitrotoluene	880,000	NE	μg/Kg	<	260	Ü
2-Chloronaphthalene	27,000,000	NE	μg/Kg	<	330	<u>-</u>
2-Chlorophenol	240,000	10,000	μg/Kg	<	330	Ū
2-Methylnaphthalene	NE	NE	μg/Kg	<	330	Ü
2-Methylphenol	44,000,000	39,000	μg/Kg	<	330	U
2-Nitroaniline ³	50,000	29	μg/Кg	<	1.600	· U
2-Nitrophenol	NE NE	NE NE	μg/Kg	<	1.600	Ü
3.3'-Dichlorobenzidine ³	5,500	210	µg/Кg	<	660	U
3-Nitroaniline	NE NE	NE NE	μg/Kg μg/Kg	`. <	1,600	υ
3/4-Methylphenol	NE NE	33,000	με/Kg με/Kg	\ <	330	Ü
4,6-Dinitro-2-methylphenol	NE	NE	<u>де/Ке</u> μе/Ке	<	1,600	. · · · · ·
4.0-Billito-2-itigitiyipiiciioi		· · · · · · · · · · · · · · · · · · ·	B_INE	· .	1,000	
4-Bromophenyl phenyl ether	NE :	NE	μg/Kg	<	330	U
4-Chloro-3-methylphenol	NE	NE NE	µg/Кg	<	330	Ü
4-Chloroaniline	3,500,000	2,700	μg/Kg	<	330	Ū
			<u>reb</u>			- -
4-Chlorophenyl phenyl ether	NE	NE	μg/Kg	<	330	U
4-Nitroaniline	NE	NE	μg/Kg	<	1,600	U
4-Nitrophenol	7,000	NE	μg/Kg	<	1,600	U
Acenaphthene	38,000	1,200,000	μg/Kg	<	50	U
Acenaphthylene	NE	NE	μg/Kg	<	50	. <u>U</u> _
Anthracene	100,000,000	NE	μg/Kg	<	330	U
Benzidine ³	11	NE	μg/Kg	<	30	U/M
Benzo[a]anthracene	2,900	15,000	μg/Kg		59	
Benzo[a]pyrene	290	1,500	μg/Kg		77	
Benzo[b]fluoranthene	2,900	15,000	μg/Kg		83	····
Benzo[g,h.i]perylene	NE NE	NE	μg/Kg	<	50	Ú
Benzo[k]fluoranthene	29,000	39,000	μg/Kg		39	
Benzoic acid	100,000.000	1,600,000	μg/Kg	<	330	ΰ
Benzyl alcohol	100,000,000	140,000	μg/Kg	<	330	Ü
Bis(2-chloroethoxy)methane	NE	NE NE	μg/Kg	<	330	Ū
Bis(2-chloroethyl)ether ³	620	12	μg/Kg	<	330	U
Dis(2-emoroemyr)emer	020	12	_ μ _Ε / Γ . ξ	`.	550	٠
Bis(2-chloroisopropyl)ether ¹	8,100	360	,, a/V =		220	_ , I
Bis(2-ethylhexyl)phthalate	180,000	260 980,000	μg/Kg	<.	330 330	Ü
Butyl benzyl phthalate	100,000,000	930,000	μg/Kg μg/Kg	< .	330	
Sacji belizji pililalate	100,000,000	750,000	he ve		330	U

Table 4
Chemical Analytical Data for
Merrillville Borrow Source Material
ACS NPL Site
Griffith, Indiana

	U.S.EPA Region	IDEM RISC	Sample	Merrillville S	ource	
	IX Preliminary	Nonresidential	Collected	7/18/2002		
	Remediation	Default Closure			-	
Analyte	Goals ¹	Levels ²	Units	Result	Q	
Semi-Volatile Organic Com			· Cints			
Carbazole	120.000	20,000	μg/Kg	< 330	U	
Chrysene	290,000	25,000	μ <u>α/Κ</u> g μg/Kg	59		
Di-n-butyl phthalate	NE	2,000,000	μg/Kg	< 330	U	
Di-n-octyl phthalate	10,000,000	2,000,000		< 330	U	
Dibenz[a,h]anthracene	290	1,500	μg/Kg	< 20	. U-	
Dibenzofuran	5,100,000	1.300 NE	µg/Кg	< 330	. Ŭ -	
Diethyl phthalate	100,000,000	1,300,000	μg/Kg	< 330	<mark>U</mark> .	
			μg/Kg		Ü	
Dimethyl phthalate	100,000,000	1,400,000	μg/Kg	<. 330	. 0	
Fluoranthene	30.000.000	880.000	μg/Kg	• • • • • • • • • • • • • • • • • • •		
Fluorene	33,000,000	1,100,000	μg/Kg	50	<u>U</u> -	
Hexachlorobenzene	1,500	3,900	μg/Кg	< 330	. <u>U</u>	
Hexachlorobutadiene	32,000	44,000	µg/Кg	< 330	_ <u>U</u> _	
Hexachloro-cyclopentadiene	5,900,000	2,000,000	μg/Kg	< 330	U	
Hexachloroethane	180,000	7,700	μg/Kg	< 330	Ŭ -	
Indeno[1,2,3cd]pyrene	2,900	3,100	μg/Kg	48		
Isophorone	2,600,000	18,000	μg/Kg	< 330	Ū .	
	i					
N-Nitrosodi-n-propylamine ³	350	2	μg/Kg	< 35	U/M	
N-Nitrosodimethylamine	48	NE	μg/Kg	< 45	U/M	
N-Nitrosodiphenylamine	500,000	32,000	μg/Kg	< 330	U.	
Naphthalene	190,000	170,000	μg/Kg	<25	U	
Nitrobenzene	110,000	340	μg/Kg	< 260	<u>U</u>	
Pentachlorophenol	11,000	660	μg/Kg	<u>< 330</u>	<u>U</u>	
Phenanthrene	NE NE	NE	μg/Kg	< 50	<u>U</u>	
Phenol	100,000,000	320,000	μg/Кg	< 330	U	
Pyrene	54,000,000	570.000	με/Κε	96		
Pesticides/PCBs	14 44 A B A B A B A B A B A B A B A B A B		1.84271			
4,4'-DDD	17	120	mg/Kg	<0.016	U	
4,4'-DDE	12	86	mg/Kg	< 0.016	U	
4.4'-DDT	12	86	mg/Kg	< 0.016	υ	
Aldrin	0.15	0.80	mg/Kg	<0.008	. U	
Alpha-BHC	0.59	0.024	mg/Kg	< 0.002	Ų.	
Aroclor 1016	_ 29	NE	mg/Kg	< 0.080	U	
Aroclor 1221	1 _	NE	mg/Kg	< 0.080	U	
Aroclor 1232	1	NE	mg/Kg	< 0.080	U	
Aroclor 1242	1	NE	mg/Kg	< 0.080	U	
Aroclor 1248	1	NE	mg/Kg	< 0.080	U	
Aroclor 1254	1	NE	mg/Kg	< 0.160	U	
Aroclor 1260	1	NE	mg/Kg	< 0.160	U	
Beta-BHC	2.1	0.086	mg/Kg	< 0.008	U	
Chlordane (alpha)	11	39	mg/Kg	< 0.080	U	
Chlordane (gamma)	11	39	mg/Kg	< 0.080	υ	
delta-BHC	NE	NE	mg/Kg	< 0.008	Ü	
Dieldrin	0.15	0.15	mg/Kg	< 0.016	Ū	
Endosulfan I	NE	NE	mg/Kg	< 0.008	U	
Endosulfan II	NE	NE	mg/Kg	< 0.016	U	
Endosulfan Sulfate	NE	NE	mg/Kg	< 0.016	Ü	

Table 4 Chemical Analytical Data for Merrillville Borrow Source Material ACS NPL Site

Griffith, Indiana

	U.S.EPA Region	IDEM RISC	Sample	Merrillville Source		
	IX Preliminary	Nonresidential	Collected	7/18/2002		
	Remediation	Default Closure				
Analyte	Goals ¹	Levels ²	Units	Result	Q	
Pesticides/PCBs	Ville to the state of the con-		Nephritaria National States	200 Sept. 100 Se	15.7	
Endrin	260	15	mg/Kg	< 0.016	U	
Endrin Aldehyde	NE	NE	mg/Kg	< 0.016	Ū	
Endrin Ketone	NE	NE	mg/Kg	< 0.016	U	
Heptachlor	0.55	1.2	mg/Kg	< 0.008	U	
Heptachlor Epoxide	0.27	1	mg/Kg	< 0.008	Ü	
Methoxychlor	4,400	180	mg/Kg	< 0.080	U	
Toxaphene	2.2	12	mg/Kg	< 0.160	$\overline{\overline{\mathbf{U}}}$ –	
Inorganics			s Sales			
Aluminum	100,000	NE	mg/Kg	14,500		
Antimony	820	37	mg/Kg	< 1.0	U	
Arsenic ⁴	2.7	20	mg/Kg	6.8		
Barium	100,000	5,900	mg/Kg	104		
Beryllium	2,200	3,200	mg/Kg	0.6		
Cadmium	810	77	mg/Kg	< 0.1	U	
Calcium	NE	NE	mg/Kg	5,220		
Chromium	450	10,120	mg/Kg	20.1		
Cobalt	100,000	NE	mg/Kg	9.1		
Copper	76,000	1,700	mg/Kg	13.4		
Cyanide, Total	35	NE	mg/Kg	< 0.10	U	
iron	100,000	NE	mg/Kg	21,000		
Lead	750	230	mg/Kg	21.1		
Magnesium	NE	NE	mg/Kg	4,540		
Manganese	32,000	NE_	mg/Kg	464		
Mercury	610	32	mg/Kg	< 0.05	U	
Nickel	41,000	2,700	mg/Kg	19.1		
Potassium	NE	NE	mg/Kg	1,910		
Selenium	10,000	53	mg/Kg	1		
Silver	10,000	87	mg/Kg	< 0.1	U_	
Sodium	NE	NE	mg/Kg	168.0		
Thalliium	130	13	mg/Kg	< 1	<u>U</u>	
Vanadium	14,000	NE NE	mg/Kg	25.8		
Zinc	100,000	10,000	mg/Kg	63.2		

Notes:

Preliminary Remediation Goals (PRGs) for Industrial Soils Screening (11/01/00)

However, becauses the reporting limits for each of these compounds is lower than the Region IX PRGs, the material was found acceptable for on site use. In the case of benzidine, the reporting limit exceeds the Region IX PRGs and IDEM has not established a threshold value for this compound

NE -- Not Established

NA -- Not Analyzed

U -- Non-detect

J -- Analyte was detected between the Method Detection Limit (MDL) and the Reporting Limit (RL)

M -- the reporting limit for this compound is based upon the laboratory's Method Detection Limit and represents the lowest reporting limit possible by the laboratory

μg/Kg -- micrograms per kilogram (or ppb)

mg/Kg -- milligrams per kilogram (or ppm)

Industrial Soil Remediation Goals were taken from the U.S.EPA Region IX

²Nonresidential Default Closure Levels were taken from the IDEM Risk Integrated System of Closure (RISC) (2/15/01)

³The typical laboratory reporting limits for six SVOC compounds exceed the IDEM RISC guidline values.

⁴Arsenic value for sample exceeds Region IX PRGs, however comparison with the regional background range (1.1 to 24 mg/kg) determined in a study published by the IEPA (1994) indicates that data from this site is below the upper limit of the published regional background concentration range. See further discussion in text

Table 5 Geotechnical Testing Results of Borrow Source Material ACS NPL Site Griffith, Indiana

			<u> </u>	Sample				
Geotechnical Test Description	Specified Method	Testing Frequency	Units	Reference No. 1 Wetland Sand	Reference No. 2 Merrillville Source	Reference No. 4 Griffith Source		
Soil Classification	USCS System	l test every 5,000 cubic yards	n/a	Grayish brown fine sand, trace gravel and silt	Dark gray, trace black sandy lean clay	Dark gray, black sandy clay		
Grain Size Analysis	ASTM D422	l test every 5,000 cubic yards	% + 3 inches % Gravel % Sand % Silt % Clay	NR NR NR NR NR	0.0 0.6 32.4 52.3	0.0 1.4 30.8 54.1		
Grain Size Analysis	ASTM D1140	l test every 5,000 cubic yards	% Fines	NR	64.3	67.3		
Optimum Moisture Content	ASTM D2216	1 test every 5,000 cubic yards	%	11.0	17.5	21.5		
Atterberg Limits	ASTM D4138	l test every 5,000 cubic yards	Liquid Limit, L _L	NR	31	31		
			Plastic Limit,	NR	19	20		
			Plasticity Index. P ₁	NR	12	11		
Moisture-Density Curve/Proctor Density	ASTM D698	l test every 5,000 cubic yards & all changes in material	lbs./ft. ³	109.0	107.5	97.0		
Specific Gravity	ASTM D854	l test every 5,000 cubic yards & all changes in material	n/a	NR	2.58	2.43		
Coefficient of Permeability	ASTM D5084	I test every 5,000 cubic yards & all changes in material	cm/sec	NR	1.5 x 10 ⁻⁸	7.8 x 10 ⁻⁶		

Notes

NR = not required because material was not imported to Site

Table 6 Root Zone and Topsoil Moisture and Compaction Test Results Off-Site Final Engineered Cover ACS, NPL Site Griffith, Indiana

Sampling Location	Date Tested	Material	Probe Depth (inches)	Dry Density (pcf)	Moisture (%)	Proctor (pcf)	% Compaction	Specification, % Moisture	Specification, % Proctor	Pass/ Fail
1	9/10/2002	Material Number 1	6	102.0	10.8	109.0	93.6	NA	80.0	Pass
2	9/11/2002	Material Number I	6	110.3	12.5	109.0	101.2	NA	80.0	Pass
3	9/10/2002	Material Number 1	6	107.6	11.9	109.0	98.7	NA	80.0	Pass
4	9/10/2002		6	102.3	12.1	109.0	93.9	NA	80.0	Pass
5	9/11/2002		6	109.1	13.4	109.0	100.1	NA	80.0	Pass
							1		80.0	
6	9/11/2002		6	116.2	14.0	109.0	106.6	NA NA		Pass
. 7 _	9/11/2002		6	111.3	13.6	109.0	102.1	<u>NA</u>	80.0	Pass
	9/11/2002		6	110.0	10.0	109.0	100.9	NA NA	80.0	Pass
9	9/12/2002	Material Number 11	6	114.5	8.4	109.0	105.0	NA	80.0	Pass_
10	9/12/2002	Material Number 1	6	110.4	9.1	109.0	101.3	NA_	80.0	Pass
11	9/12/2002	Material Number I	6	115.9	6.2	109.0	106.3	NA	80.0	Pass
12	9/12/2002	Material Number 1	6	116.7	7.7	109.0	107.1	NA	80.0	Pass
	9/12/2002	· · · · · · · · · · · · · · · · · ·	6	113.0	6.4	109.0	103.7	NA NA	80.0	Pass
	9/12/2002	1	6	115.9	5.1	109.0	106.3	NA	80.0	Pass
15	9/12/2002		6	117.1	4.9	109.0	107.4	NA .	80.0	Pass
									1	
16	9/12/2002		6	116.4	4.0	109.0	106.8	NA 10.5	80.0 80.0	Pass Pass
17 18	9/16/2002 9/16/2002		6 6	92.6 96.9	18.8 17.7	107.5 107.5	86.1 90.1	15.5 - 19.5 15.5 - 19.5	80.0	Pass
	9/16/2002		. 6	89.4	17.7	107.5	83.2	15.5 - 19.5	80.0	Pass
20	9/16/2002		6	94.7	18.3	107.5	88.1	15.5 - 19.5	80.0	Pass
21	9/16/2002	Material Number 2	6	90.0	19.3	107.5	83.7	15.5 - 19.5	80.0	Pass
22	9/26/2002		6	97.9	19.0	107.5	91.1	15.5 - 19.5	80.0	Pass
23	9/27/2002	Material Number 2	6	86.9	17.7	107.5	80.8	15.5 - 19.5	80.0	Pass
24	9/26/2002		_ 6	99.0	18.0	107.5	92.1	15.5 - 19.5	80.0	Pass
25	9/24/2002	Material Number 2	6	96.1	18.2	107.5	89.4	15.5 - 19.5	80.0	Pass
26	9/24/2002	Material Number 2	6	92.0	18.2	107.5	85.6	15.5 - 19.5	80.0	Pass
27 28	9/24/2002 9/24/2002	Material Number 2	. 6 _	- 87.3 99.4	<u>17.5</u> 18.1	107.5 107.5	81 <u>.2</u> 92.5	15.5 - 19.5 15.5 - 19.5	80.0 80.0	Pass Pass
29	9/24/2002	Material Number 2 Material Number 2	6	92.3	18.2	107.5	85.9	15.5 - 19.5 15.5 - 19.5	80.0	Pass
30	9/26/2002	Material Number 2	6	$-\frac{92.5}{95.7}$	17.6	107.5	89.0	15.5 - 19.5	80.0	Pass
	9/24/2002	Material Number 2	6	94.5	15.7	107.5	87.9	15.5 - 19.5	80.0	Pass
1	9/24/2002	Material Number 2	6	92.9	17.5	107.5	86.4	15.5 - 19.5	80.0	Pass
33	9/24/2002	Material Number 2	6	93.3	17.5	107.5	86.8	15.5 - 19.5	80.0	Pass
34	9/26/2002	Material Number 1	6	102.0	11.9	109.0	93.6	NA	80.0	Pass
35	9/24/2002	Material Number 2	6	87.3	15.6	107.5	81.2	15.5 - 19.5	80.0	Pass
36	9/30/2002	Material Number 3 ²	6	85.3	19.8	97.0	87.9	19.5 - 23.5	80.0	Pass
37	9/26/2002	Material Number 3 ²	6	91.8	23.4	97.0	94.6	19.5 - 23.5	80.0	Pass
38	9/30/2002	Material Number 3 ²	6	92.8	20.4	97.0	95.7	19.5 - 23.5	80.0	Pass
39	9/30/2002		6	89.1	19.9	97.0	91.9	19.5 - 23.5	80.0	Pass
40	9/30/2002	Material Number 3 ²		1		97.0	92.1	19.5 - 23.5	80.0	Pass
i 1	' 1	Ť	6	89.3	19.7	1	l t	1		
41	9/30/2002	Material Number 3 ²	6	89.0	19.9	97.0	91.8	19.5 - 23.5	80.0	Pass
42	9/26/2002	Material Number 3 ²	6	88.4	20.2	97.0	91.1	19.5 - 23.5	80.0	Pass
43	9/30/2002	Material Number 3 ²	6	92.6	22.0	97.0	95.5	_ 19.5 - 23.5	80.0	Pass
44	10/1/2002	Material Number 3 ²	6	84.3	22.0	97.0	86.9	19.5 - 23.5	80.0	Pass
45	10/1/2002	Material Number 32	6	92.1	23.4	97.0	94.9	19.5 - 23.5	80.0	Pass

Table 6 Root Zone and Topsoil Moisture and Compaction Test Results Off-Site Final Engineered Cover ACS, NPL Site Griffith, Indiana

Sampling Location	Date Tested	Material	Probe Depth (inches)	Dry Density (pcf)	Moisture (%)	Proctor (pcf)	% Compaction		Specification, % Proctor	Pass/ Fail
46	9/30/2002	Material Number 3 ²	6	78.8	21.1	97.0	81.2	19.5 - 23.5	80.0	Pass
47	10/1/2002	Material Number 3 ²	6	78.8	21.7	97.0	81.2	19.5 - 23.5	80.0	Pass
48	9/30/2002	Material Number 3 ²	6	78.0	21.0	97.0	80.4	19.5 - 23.5	80.0	Pass
49	9/27/2002	Material Number 3 ²	6	90.7	19.8	97.0	93.5	19.5 - 23.5	80.0	Pass
50	9/30/2002	Material Number 3 ²	6	87.1	20.6	97.0	89.8	19.5 - 23.5	80.0	Pass
51	10/1/2002	Material Number 3 ²	6	86.1	23.2	97.0	88.8	19.5 - 23.5	80.0	Pass
52	10/1/2002	Material Number 3 ²	6	94.2	21.6	97.0	97.1	19.5 - 23.5	80.0	Pass
53	9/30/2002	Material Number 3 ²	6	83.0	20.1	97.0	85.6	19.5 - 23.5	80.0	Pass
54	9/30/2002	Material Number 3 ²	6	88.8	20.2	97.0	91.5	19.5 - 23.5	80.0	Pass
56 ³	10/1/2002	Material Number 3 ²	6	92.2	23.5	97.0	95.1	19.5 - 23.5	80.0	Pass

Notes_

Tests were conducted by K&S Soil & Environmental Consultants using a nuclear density testing unit (ASTM D2922).

- 1 It was determined that the Wetland Sand material had a wider moisture range because of the nature of the material.
 Test location #34 was initially tested as Merrillville Source material, however was later determined through field investigation to be Wetland Sand material.
- 2 The soil obtained from the Griffith, IN source met the requirements for root zone material and topsoil material, therefore, it was used for both
- 3 Test location #55 was not used

The in-place test locations are shown on Figure 5.

NA = Not Applicable

Table 7 Root Zone Sand Cone Test Results Off-Site Final Engineered Cover ACS, NPL Site Griffith, Indiana

Sampling Location	Date Tested	Material	Dry Density (pcf)	Moisture (%)		% Compaction		Specification, % Proctor	Pass/ Fail
1	9/10/2002	Material Number 1	89.3	7.4	109.0	81.9	NA	80.0	Pass
22		Material Number 2		18.6	107.5	85.9	15.5-19.5	80.0	Pass
44	9/10/2002	Material Number 3	83.8	20.9	97.0	86.4	19.5-23.5	80.0	Pass

<u>Notes</u>

NA - Not applicable MWH Engineers determined that moisture has little affect on sand compaction, therefore this material was given a wide range for the moisture content.

Tests were conducted by K&S Soil & Environmental Consultants using a the sand cone method (ASTM D698)

The in-place test locations are shown on Figure 5

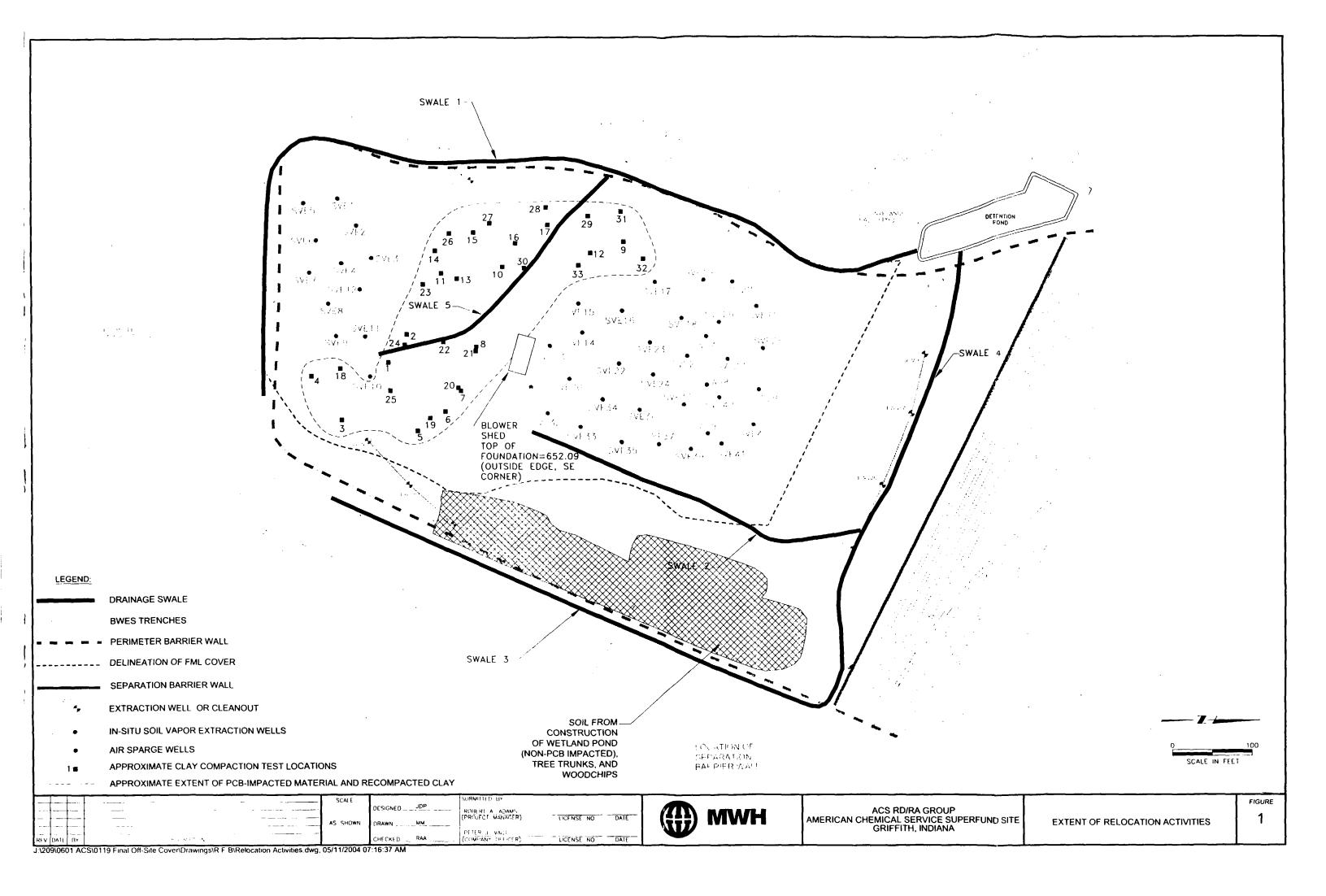
Table 8 Depth of Root Zone and Topsoil Material ACS NPL Site Griffith, Indiana

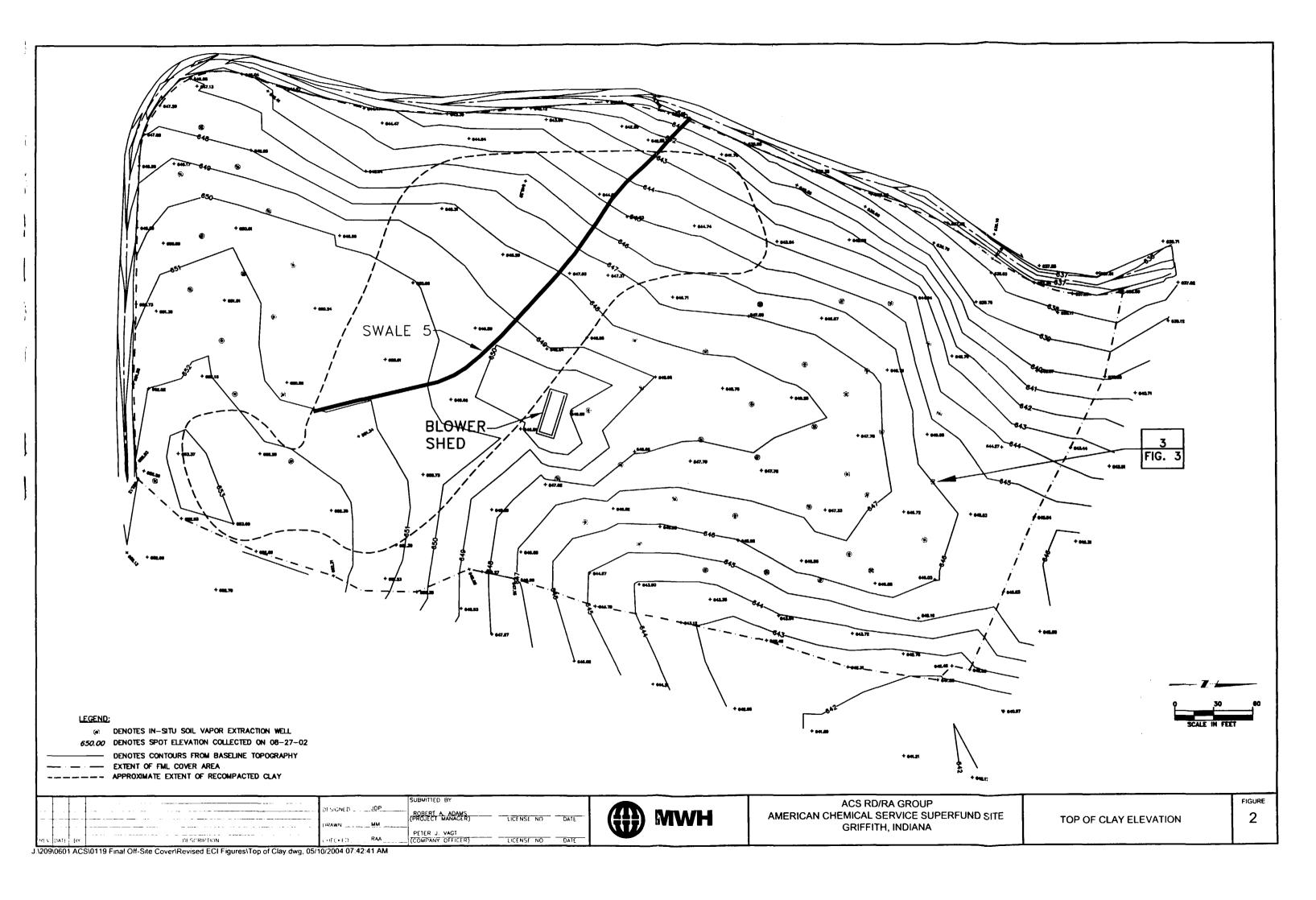
Point No.	Survey Point	Northin	Faction	Top of Clay	Top of Root Zone	Root Zone Thickness	Top of Topsoil Elevation	Topsoil Thickness	Total Soil Cover Thickness
	Location	Northing (442.70	Easting 5163.42	Elevation 636.89	Elevation 636.83	(ft.) -0.06	637.60	(ft.)	(ft.)
100	Edge Edge	6443.79 6373.94	5338.41	645.64	646.33	0.69	646.83	0.77	1.19
103	Edge	6350.06	5396.18	645.63	646.14	0.51	646.84	0.70	1.17
105	Edge	6322.83	5456.66	642.80	643.43	0.63	644.11	0.68	1.31
106	Edge	6308.95	5453.97	642.42	644.19	1.77	644.48	0.29	2.06
107	Edge	6298.22	5464.73	641.86	643.58	1.72	643.92	0.34	2.07
108	Edge	6228.63	5455.01	642.31	643.28	0.97	643.65	0.37	1.34
109	Edge	6166.23	5433.97	642.46	643.84	1.37	644.18	0.34	1.71
110	Edge	6100.16	5419.02	643.12	644.10	0.98	644.60	0.49	1.48
111	Edge	6033.51	5406.54	644.78	645.90	1.12	646.00	0.10	1.22
112	Edge	5971.25	5385.45	647.15	648.17	1.02	648.74	0.57	1.59
113	Edge	5946.61	5379.77	648.27	NS	NS	NS	NS	NS
187	Edge	6443.39	5163.73	636.93	NS	NS	NS	NS	NS
188	Edge	6404.55	5165.33	637.17	637.54	0.38	637.66	0.11	0.49
189	Edge	6375.05	5156.65	637.34	NS	NS	NS	NS	NS
190	Edge	6342.87	5138.67	637.68	637.32	-0.35	637.81	0.49	0.14
192	Edge	6307.76	5110.67	637.52	637.59	0.08	637.55	-0.04	0.03
193	Edge	6248.35	5087.93	638.50	638.97	0.47	639.58	0.62	1.09
194	Edge	6203.27	5069.72	639.36	639.77	0.40	640.29	0.53	0.93
196	Edge	6151.19	5048.40	639.95	640.00	0.05	640.98	0.98	1.03
197	Edge	6092.30	5025.37	640.40	640.44	0.04	641.07	0.62	0.67
200	Interior	6075.62	5045.71	642.58	643.50	0.93	644.10	0.60	1.52
201	Interior	6059.24	5105.05	645.03	646.10	1.07	646.50	0.40	1.46
202	Interior	6044.26	5150.27	647.37	648.18	0.81	648.90	0.72	1.53
203	Interior	6027.88	5198.13	648.55	649.85	1.29	650.38	0.53	1.83
204	Interior	6015.76	5255.17	649.89	651.57	1.68	651.57	0.00	1.68
205	Interior	5995.19	5312.19	647.62	649.21	1.59	649.29	0.08	1.67
206	Interior	5976.23	5364.45	646.88	648.25	1.37	648.79	0.54	1.91
207 208	Interior Interior	6029.32	5380.72 5330.90	644.97	646.03	1.06	646.50 648.31	0.47 0.64	1.53
209	Interior	6047.82 6064.70	5286.80	646.52 648.06	647.67 649.39	1.15	649.67	0.84	1.61
210	Interior	6081.13	5229.06	648.98	650.12	1.14	650.61	0.49	1.63
211	Interior	6094.96	5167.36	646.71	648.02	1.32	648.17	0.45	1.46
212	Interior	6112.06	5112.50	644.74	645.55	0.81	646.24	0.69	1.50
213	Interior	6133.54	5057.14	641.70	642.50	0.80	643.08	0.58	1.38
214	Interior	6191.39	5080.68	640.86	642.07	1.22	642.67	0.60	1.82
215	Interior	6175.79	5124.11	643.84	645.27	1.43	645.74	0.47	1.90
216	Interior	6153.78	5182.30	647.00	648.39	1.38	648.62	0.24	1.62
217	Interior	6133.28	5238.11	648.76	649.78	1.01	650.12	0.34	1.35
218	Interior	6107.89	5294.29	647.70	648.99	1.29	649.55	0.56	1.84
219	Interior	6084.20	5345.26	645.93	646.60	0.67	647.40	0.80	1.47
220	Interior	6067.74	5389.82	643.90	644.98	1.08	645.59	0.61	1.68
221	Interior	6122.89	5401.20	643.38	644.40	1.03	644.82	0.42	1.44
222	Interior	6144.59	5355.93	645.98	646.84	0.86	647.64	0.80	1.66
223	Interior	6163.06	5301.80	647.79	648.89	1.10	649.35	0.46	1.56
224	Interior	6186.47	5245.35	648.25	649.59	1.34	649.68	0.08	1.43
225	Interior	6209.78	5183.86	646.67	647.84	1.18	648.11	0.27	1.44
226	Interior	6231.18	5123.19	642.52	643.64	1.12	644.03	0.39	1.51
227	Interior	6243.69	5097.62	639.69	640.65	0.96	641.28	0.63	1.59
317	Edge	6086.60	5022.94	640.30	639.28	-1.02	641.22	1.93	0.91
318	Edge	6044.05	5015.93	641.16	640.49	-0.67	641.66	1.17	0.50
319	Edge	5984.54	5020.80	642.12	640.87	-1.25	642.50	1.63	0.38
320	Edge	5920.22	5025.01	643.39	643.44	0.05	644.02	0.58	0.62
321	Edge	5855.62	5020.43	644.47	644.62	0.14	645.39	0.78	0.92
322	Edge	5793.43 5760.57	5004.88 4993.64	644.97 646.04	645.43 646.06	0.46 0.02	645.73 646.11	0.30	0.76 0.07

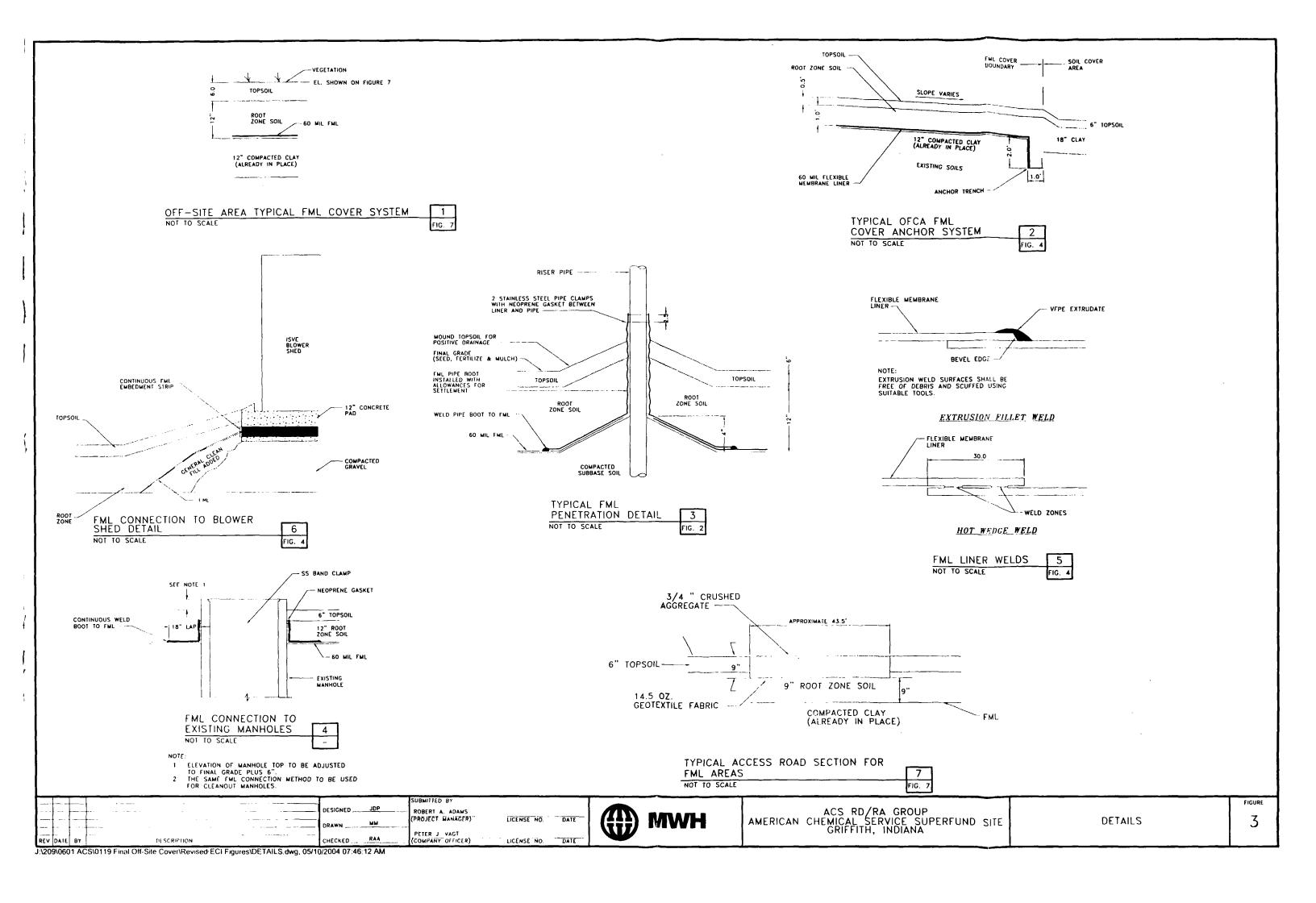
Table 8 Depth of Root Zone and Topsoil Material ACS NPL Site Griffith, Indiana

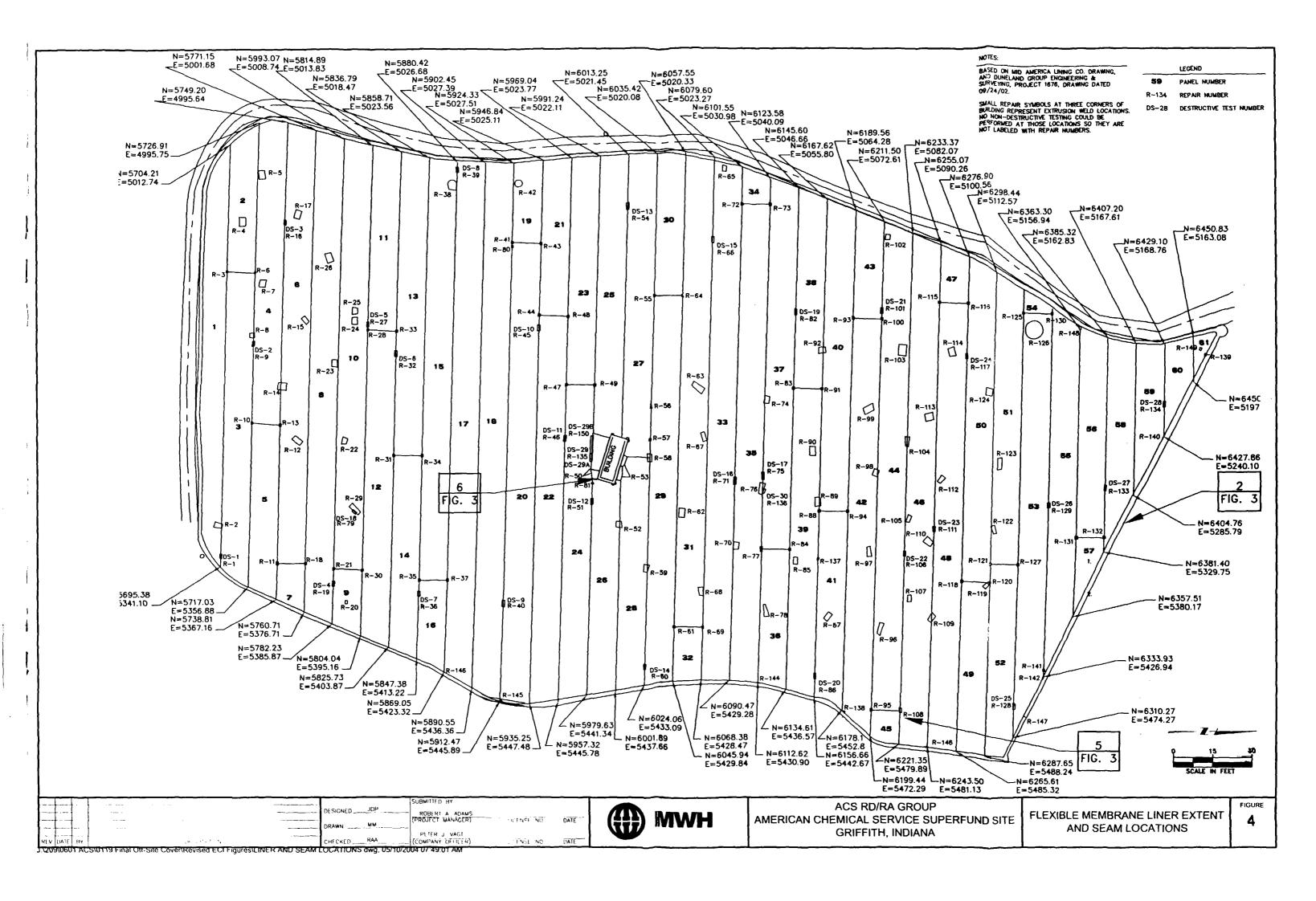
Point No.	Survey Point Location	Northing	Easting	Top of Clay Elevation	Top of Root Zone Elevation	Root Zone Thickness (ft.)	Top of Topsoil Elevation	Topsoil Thickness (ft.)	Total Soil Cover Thickness (ft.)
324	Edge	5720.88	4996.79	646.98	645.41	-1.57	647.76	2.35	0.78
325	Edge	5697.48	5017.77	647.20	646.09	-1.11	647.85	1.76	0.65
327	Edge	5685.15	5040.11	647.88	646.00	-1.88	648.47	2.46	0.58
328	Edge	5681.54	5064.56	648.56	648.66	0.09	648.86	0.20	0.30
329	Edge	5679.89	5112.29	649.59	649.61	0.02	649.99	0.38	0.40
330	Edge	5679.06	5171.55	650.73	650.82	0.10	651.38	0.56	0.66
331	Edge	5676.98	5233.62	651.58	651.80	0.21	652.22	0.43	0.64
332	Edge	5678.61	5295.68	652.03	652.06	0.03	652.48	0.42	0.46
333	Edge	5680.81	5308.07	652.12	652.14	0.02	653.03	0.90	0.91
334	Edge	5713.60	5338.16	652.93	654.04	1.11	654.51	0.47	1.58
335	Edge	5771.07	5363.86	652.89	654.40	1.51	654.89	0.49	2.00_
336	Edge	5831.67	5382.90	652.31	653.91	1.59	654.31	0.41	2.00
337	Edge	5853.09	5394.30	651.69	652.92	1.22	653.18	0.26	1.49
338	Edge	5896.24	5395.45	650.35	650.96	0.62	651.32	0.36	0.97
339	Edge	5936.71	5377.73	648.69	649.52	0.83	650.04	0.52	1.35
340	Edge	5973.45	5385.62	646.99	648.06	1.08	648.69	0.63	1.70
228	Interior	6296.80	5125.74	638.79	639.87	1.08	640.36	0.48	1.57
229	Interior	6281.98	5167.74	644.04	644.55	0.50	645.47	0.92	1.43
230	Interior	6259.92	5224.10	646.79	647.73	0.94	648.43	0.70	1.64
231	Interior	6237.15	5275.03	647.78	648.91	1.13	649.18	0.27	1.40
232	Interior	6212.02	5332.61	647.33	648.64	1.31	648.96	0.32	1.63
233	Interior	6193.52	5372.05	646.56	647.38	0.82	648.09	0.71	1.53
234	Interior	6175.77	5414.64	643.94	644.84	0.90	645.51	0.67	1.57
235	Interior	6232.38	5428.91	643.72	644.85	1.13	645.48	0.63	1.76
236	Interior	6250.15	5389.94	646.55	647.52	0.97	647.97	0.44	1.42
237	Interior	6272.28	5334.18	646.72	647.77	1.06	648.34	0.57	1.62
238	Interior	6290.73	5274.23	645.55	646.74	1.19	647.36	0.62	1.80
239	Interior	6310.22	5213.63	642.70	643.66	0.96	644.47	0.81	1.77
240	Interior	6329.42	5171.92	638.75	640.47	1.72	641.10	0.63	2.35
241	Interior	6341.60	5149.65	638.03	638.97	0.94	639.79	0.82	1.76
242	Interior	6393.16	5179.93	638.11	639.52	1.42	639.80	0.28	1.69
243	Interior	6376.70	5225.14	640.07	641.71	1.64	642.36	0.65	2.29
244	Interior	6349.14	5284.10	644.27	645.40	1.13	645.71	0.31	1.44
245	Interior	6324.12	5336.09	645.83	646.79	0.96	647.18	0.39	1.35
246	Interior	6296.16	5386.71	646.03	646.91	0.89	647.48	0.57	1.45
247	Interior	6283.42	5416.88	645.19	645.74	0.55	646.77	1.03	1.58
248	Interior	6271.41	5444.58	642.78	644.26	1.48	644.73	0.47	1.96
317	Edge	6086.60	5022.94	640.30	639.28	-1.02	641.22	1.93	0.91
318	Edge	6044.05	5015.93	641.16	640.49	-0.67	641.66	1.17	0.50
319		5984.54	5020.80		640.87				0.38
320	Edge Edge	5920.22	5025.01	642.12 643.39	643.44	-1.25 0.05	642.50 644.02	0.58	0.58
321	Edge	5855.62	5020.43	644.47	644.62	0.03	645.39	0.38	0.62
322		5793.43	5004.88	644.47	645.43	0.14	645.73	0.78	0.76
	Edge		4993.64				 		
323	Edge	5760.57		646.04	646.06	0.02	646.20	0.14	0.16
324	Edge	5720.88	4996.79	646.98	645.41	-1.57	647.57	2.16	0.59
325	Edge	5697.48	5017.77	647.20	646.09	-1.11	647.71	1.63	0.51
327	Edge	5685.15	5040.11	647.88	646.00	-1.88	648.48	2.48	0.60
328	Edge	5681.54	5064.56	648.56	648.66	0.09	648.85	0.19	0.29
392	Interior	5780.57	5006.83	646.41	NS	NS	NS (40.00	NS	NS 0.32
329	Edge	5679.89	5112.29	649.59	649.61	0.02	649.92	0.32	0.33
330	Edge	5679.06	5171.55	650.73	650.82	0.10	651.26	0.43	0.53
331	Edge	5676.98	5233.62	651.58	651.80	0.21	652.11	0.32	0.53
332	Edge	5678.61	5295.68	652.03	652.06	0.03	652.43	0.37	0.40
333	Edge	5680.81	5308.07	652.12	652.14	0.02	652.92	0.78	0.80
398	Interior	5684.96	5301.20	652.26	653.60	1.34	653.69	0.09	1.43
334	Edge	5713.60	5338.16	652.93	654.04	1.11	654.49	0.45	1.56

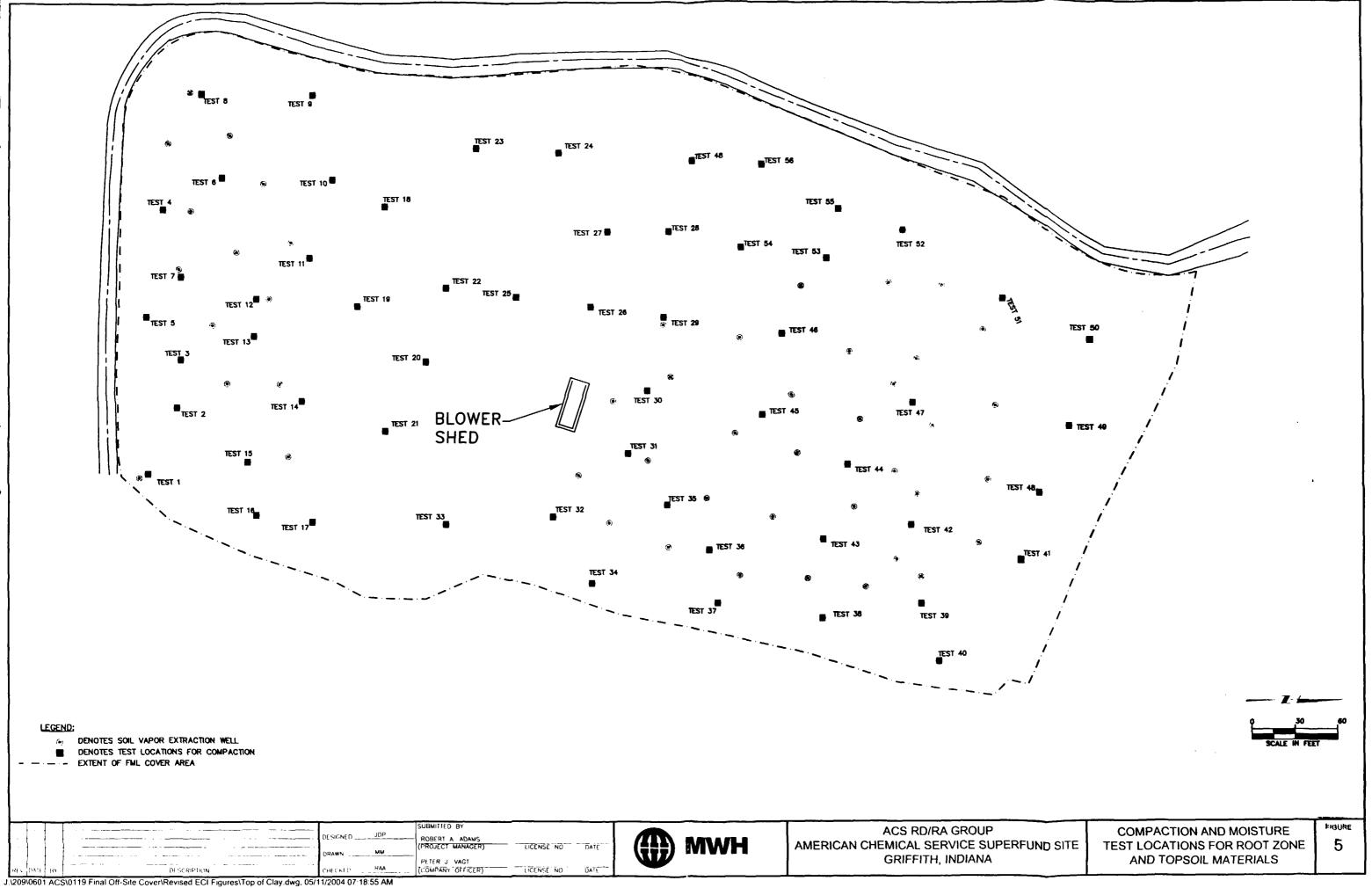
Table 8 Depth of Root Zone and Topsoil Material ACS NPL Site Griffith, Indiana

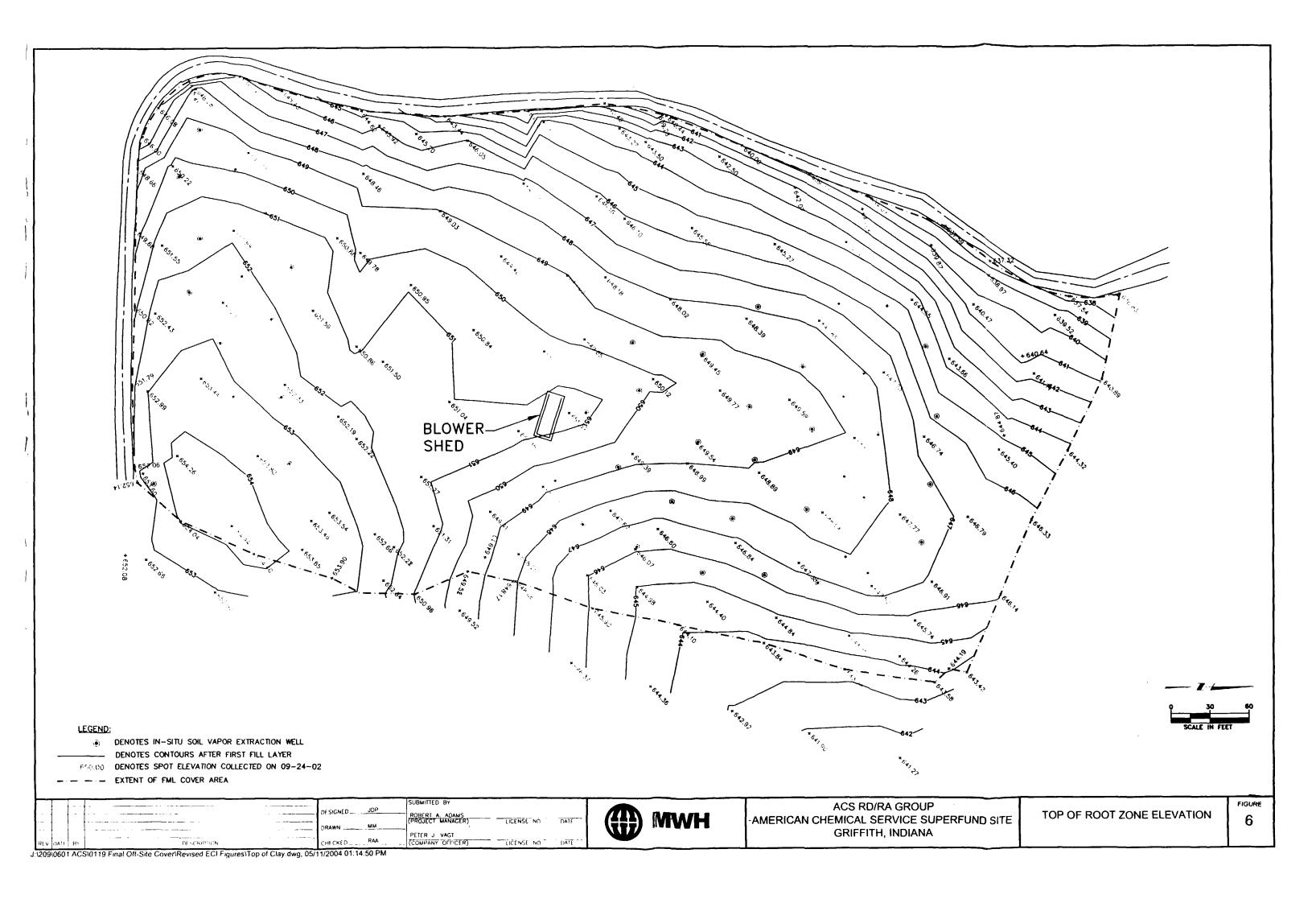

				· · · · · · · · · · · · · · · · · · ·					Total Cait
i	!			T6	Top of	Root Zone	Tomos	Tomosil	Total Soil Cover
1	Survey Point			Top of	Root Zone	Thickness	Top of Topsoil	Topsoil Thickness	Thickness
Point No.	Location	Northina	Footing	Clay	Elevation	(ft.)	Elevation	(ft.)	(ft.)
		Northing 6429.22	Easting	Elevation 639.85		1.04	640.89		1.03
101	Edge		5229.81		640.89		644.43	-0.01	0.99
335	Edge	6402.24	5284.91	643.44	644.32	0.88	654.89	0.11	2.00
	Edge	5771.07	5363.86	652.89	654.40				
336	Edge	5831.67	5382.90	652.31	653.91	1.59	654.36	0.45	2.05
337	Edge	5853.09	5394.30	651.69	652.92	1.22	654.35	2.23	2.66
338	Edge	5896.24	5395.45	650.35	650.96	0.62	653.19		
339	Edge	5936.71	5377.73	648.69	649.52	0.83	651.33	1.82	2.64
340	Edge	5973.45	5385.62	646.99	648.06	1.08	650.04	1.98	3.05
357	Interior	5954.10	5331.43	648.26	649.41	1.15	649.66	0.25	1.40
358	Interior	5976.28	5269.16	649.81	651.36	1.54	651.61	0.25	1.79
359	Interior	5996.46	5207.30	649.04	650.28	1.24	651.10	0.82	2.06
360	Interior	6014.52	5148.54	647.93	649.03	1.10	649.28	0.25	1.35
361	Interior	6037.74	5087.61	644.87	646.16	1.29	646.56	0.40	1.69
362	Interior	6055.37	5035.32	642.56	643.27	0.72	644.14	0.87	1.59
363	Interior	5996.33	5029.81	643.58	644.43	0.85	645.13	0.70	1.55
364	Interior	5980.65	5077.23	646.29	647.25	0.96	647.73	0.47	1.44
365	Interior	5963.06	5133.62	648.25	649.40	1.15	650.20	0.80	1.96
366	Interior	5941.77	5190.62	649.59	650.84	1.25	651.27	0.43	1.68
367	Interior	5923.00	5246.34	649.66	651.04	1.38	651.53	0.49	1.87
368	Interior	5901.38	5304.38	650.73	651.27	0.54	652.27	1.00	1.54
369	Interior	5880.16	5358.90	651.30	652.22	0.91	652.77	0.55	1.47
370	Interior	5871.80	5384.95	651.23	652.34	1.11	652.81	0.47	1.58
372	Interior	5829.98	5332.04	652.35	653.54	1.19	654.11	0.57	1.76
373	Interior	5851.22	5274.91	651.34	652.22	0.88	653.02	0.80	1.68
374	Interior	5872.04	5215.05	650.61	651.50	0.89	651.96	0.46	1.35
375	Interior	5893.82	5155.48	650.06	650.95	0.90	651.75	0.80	1.69
376	Interior	5916.26	5098.21	648.31	649.03	0.72	649.72	0.69	1.41
377	Interior	5937.08	5043.88	644.54	646.05	1.51	646.24	0.18	1.69
378	Interior	5869.73	5031.90	644.47	645.92	1.45	646.37	0.45	1.90
379	Interior	5857.05	5068.97	645.94	648.46	2.52	648.60	0.14	2.65
380	Interior	5836.78	5119.05	649.96	650.88	0.92	651.41	0.53	1.45
381	Interior	5817.46	5175.26	650.24	651.56	1.32	652.07	0.51	1.83
382	Interior	5795.33	5232.83	650.58	652.33	1.75	652.80	0.47	2.22
383	Interior	5774.06	5287.95	652.29	653.80	1.51	654.71	0.91	2.42
384	Interior	5753.42	5342.05	653.00	654.44	1.44	655.16	0.72	2.16
387	Interior	5711.15	5287.71	653.37	654.26	0.89	654.83	0.57	1.46
388	Interior	5729.79	5227.74	652.18	653.44	1.26	653.89	0.44	1.71
389	Interior	5747.10	5168.77	651.51	652.60	1.10	653.09	0.49	1.58
390	Interior	5755.90	5112.83	650.81	651.88	1.07	652.32	0.44	1.51
391	Interior	5767.43	5052.81	648.00	649.33	1.33	650.31	0.98	2.31
393	Interior	5725.98	5002.92	647.13	648.28	1.15	648.59	0.31	1.46
394	Interior	5708.45	5062.86	649.17	650.22	1.05	650.80	0.58	1.63
395	Interior	5700.07	5124.15	650.69	651.55	0.86	652.09	0.54	1.40
396	Interior	5694.59	5176.91	651.36	652.43	1.07	652.82	0.39	1.46
397	Interior	5688.65	5237.48	652.02	652.99	0.97	653.49	0.51	1.47

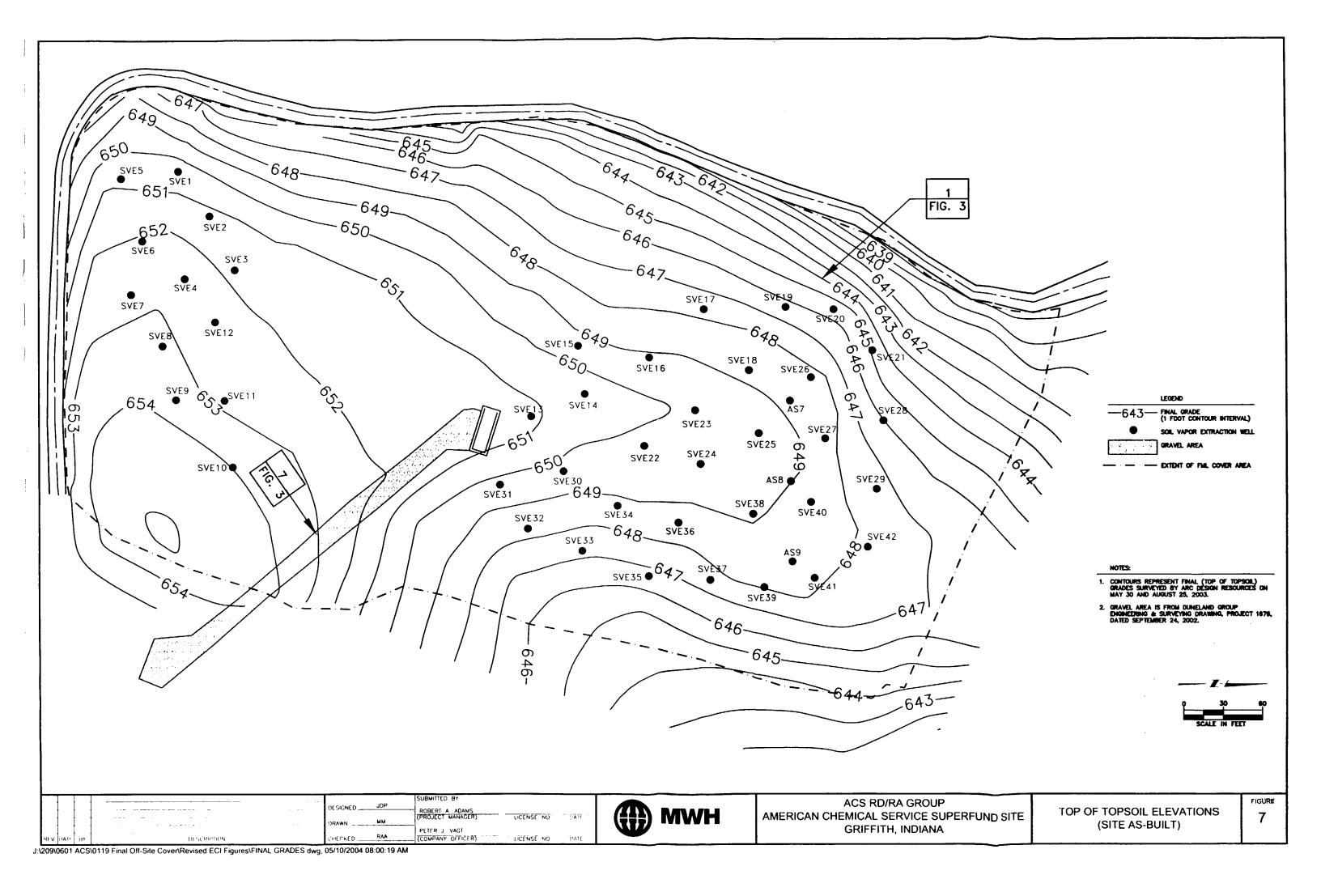

Notes:

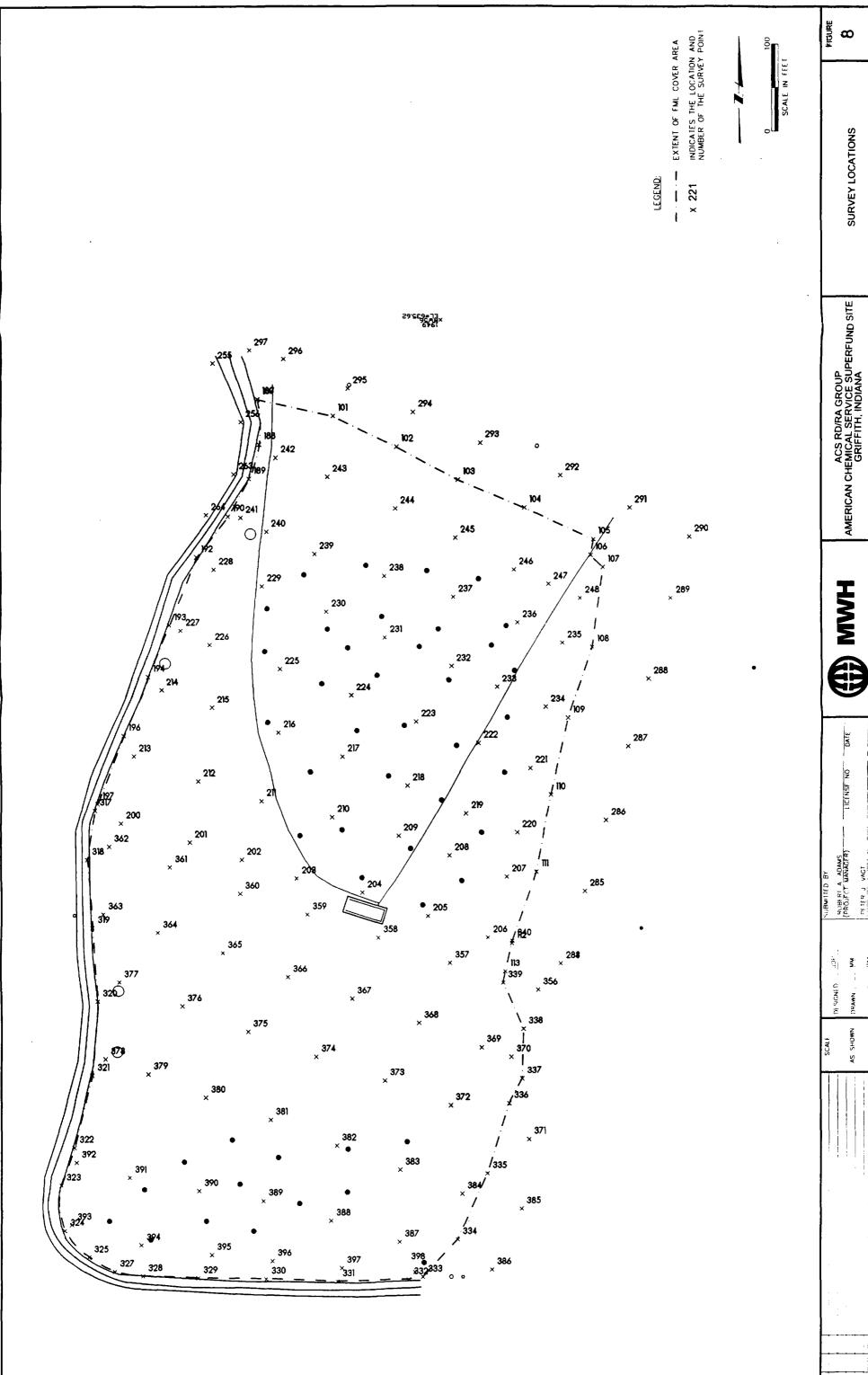

NS - Not Surveyed


Because the Top of Clay survey was performed prior to removing the erosion control blanket and regrading eroded soils, several locations have "negative" thicknesses. This was caused by a change in the initial elevations at these locations after regrading was performed. Further discussion is presented in Section 5.5 of this report.


FIGURES







LICENSE NO. DATE

PETER J VAGT

40 **X A**8

J·209\0601 ACS\0119 Final Off-Site Cover\Drawings\R F B\Survey Locations.dwg, 06\08\2004 08:15-49 AM

APPENDIX A CHRONOLOGICAL SUMMARY OF CONSTRUCTION ACTIVITIES

A CHRONOLOGICAL SUMMARY OF CONSTRUCTION ACTIVITIES

This section summarizes the major construction activities performed and equipment used during the completion of the tasks outlined in this CCR. Weekly construction progress meetings were held throughout the project.

Week of June 21, 2002

MEI began the maintenance work planned prior to the installation of the final cover, including the installation of protective concrete structures around piezometers and extraction trench cleanouts.

Week of July 7, 2002 through Week of July 28, 2002

MEI completed the maintenance work began in June.

Week of July 22, 2002

MEI mobilized to the Site on July 22 to relocate PCB material from the On-Site Area, near the former Fire Pond, to drainage Swale 5 in the Off-Site Area. An initial project kickoff and health and safety meeting was held on July 22 for the partial crew mobilized first. A larger project kickoff and health and safety meeting was held on July 23 for the entire crew. The PCB-impacted soil, excavated from the wetlands located west of the GWTP during the summer and fall of 2001, had been used to fill in the Fire Pond. MEI removed 12-inches of clay in the area of Swale 5 and placed this excess wetland material in Swale 5.

MEI raises manholes at extraction wells EW-12 and EW-13 to meet future final grade.

Week of July 29, 2002

MEI completed replacement and recompaction of 12-inch clay layer over wetland material in Swale 5 on July 31.

Week of August 19, 2002

ECI mobilizes to the Site on August 21. MWH and ECI conduct a health and safety and construction kickoff meeting on August 22.

Week of August 26, 2002

ECI prepares clay surface area and site for liner installation. Liner material begins to arrive on the Site. Duneland Surveyors document existing contours of the liner area and delineate the liner extents.

Week of September 2, 2002

ECI begins the construction of the perimeter anchor trench to secure the liner on September 3. ECI begins to constructs a test pad on September 4. ECI then operates heavy equipment on it and examines the liner for any evidence of damage.

MAL mobilizes and attends a health and safety and construction kickoff meeting on September 4. MAL substantially completes installation of FML liner on September 7.

Week of September 9, 2002

MAL completes remaining detail work for liner installation, including installation of "boots" around ISVE wells and blower shed building. MAL completes quality control testing and demobilizes from the site on September 11. Duneland Surveyors survey panel and seam locations for liner installation.

ECI begins to cover the completed liner with root zone material on September 9. ECI first uses on-site material from wetland excavation. ECI then begins to import root zone material from the Merrillville source. The material is then compacted and tested for compaction and moisture content.

Week of September 16, 2002

ECI continues to cover the completed liner with root zone material. ECI has exhausted the Merrillville source and begins to import root zone material from the Griffith source. The material is then compacted and tested for compaction and moisture content.

Week of September 23, 2002

ECI finishes covering the completed liner with root zone material on September 26. The material is then compacted and tested for compaction and moisture content. ECI completes backfilling the anchor trench on September 25. ECI begins placement of topsoil material on September 26 over areas where root zone material has been installed and successfully tested.

Vapor extraction well SVE-38 is grazed by a bulldozer and damaged on September 24. MWH and ECI investigate the extent of damage.

Week of September 30, 2002

ECI completes compaction and moisture testing of the placed root zone material on October 1. ECI completes placement of topsoil material over root zone material on October 2. The Cooling Landscape Contractors place Grass seed over the site on October 3 using hydroseeding methods.

ECI completes the re-installation of the gravel access road between Colfax Avenue and the Off-Site Area Blower Shed on October 2. ECI demobilizes from the site on October 3 and 4.

Week of October 7, 2002

Duneland Surveyors complete a final topographic survey of the Site on October 8. Repair of damage to extraction well SVE-38 is completed on October 10.

Week of October 21, 2002

Area Survey resurveys the top of casing of SVE-38 on October 23.

Week of August 18, 2003
ECI on-site placing additional topsoil in the 18 areas that surveys indicated did not meet the thickness requirement.

TMK/JDP/jmf J:\209\0601 AC\$\0119 Final Off-Site Cover\6010119a008.doc

APPENDIX B PHOTOGRAPHS

July 2002 (Looking South): An excavator loads PCB-impacted material from the Former On-Site

Area Fire Pond into a dump truck. The dump truck has backed up to the stockpile on a geotextile mat to

prevent potential tracking of material out of the work area.

2. July 2002 (Looking South): PCB-impacted material is transported from the Former Fire Pond (foreground) to the Off-Site Area (background) for placement under the final engineered cover.

3. July 2002 (Looking Northwest): PCB-impacted material is placed in drainage Swale 5. Prior to material placement, the top 12 inches of clay was removed and stockpiled for later use.

4. July 2002 (Looking West): A smooth drum roller compacts the newly-placed PCB-impacted material.

5. July 2002 (Looking Southwest): A sheeps-foot/dozer combination machine spreads and compacts 12 inches of clay over the PCB-impacted material in two six-inch lifts.

6. July 2002 (Looking Southeast): A water truck wets the clay to aid in compaction.

7. August 2002 (Looking West): Small mounds of sand are placed around each SVE and groundwater monitoring well prior to liner installation to ensure water will not collect around the wells.

8. September 2002 (Looking North): A backhoe with a narrow-bucket is used to dig a two-foot deep anchor trench around the perimeter of the FML liner area. Air monitoring is conducted during the trenching process.

9. September 2002 (Looking East): Construction and household debris excavated during the anchor trench construction is stockpiled on a poly liner and covered. This material is later transported to the On Site Area for placement under the On-Site Area Interim Engineered Cover.

10. September 2002 (Looking East): A low-pressure bobcat is used to place clay back into the anchor trenches around the FML perimeter. The bobcat is then used to compact the clay in the trench.

11. September 2002 (Looking West): A test pad is constructed by covering a 23-foot by 65-foot piece of FML liner with 12-inches of root zone and six-inches of topsoil to simulate the actual construction. Heavy equipment is then run back and forth across the test pad to simulate installation methods.

12. September 2002 (Looking North): After the test pad was constructed and subjected to vehicle traffic loading, a section was uncovered and examined for evidence of damage to the FML. No damage was observed.

13. September 2002 (Looking Southwest): Trial welds are performed daily by each welding machine and operator prior to beginning and after every four hours of production work.

14. September 2002: A tensiometer is used to test the shear and peel adhesion strengths of each test piece cut from the trial welds. This machine is also used to perform destructive testing of both extrusion and fusion field welds.

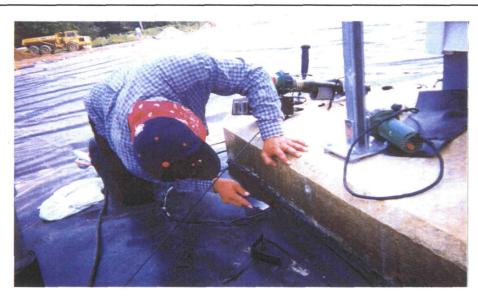
15. September 2002 (Looking West): FML liner is deployed using a special attachment placed on a loader. The liner is unrolled in an east-west orientation by installation crew members. Sandbags are placed along the liner edge to prevent the liner from being picked up by the wind.

16. September 2002 (Looking North): A hole is cut in the liner as it is placed over each penetration such as an ISVE well. A "skirt" is then placed over this hole and welded to the surrounding liner and to the boot fabricated around each well.

17. September 2002 (Looking Northwest): Adjoining FML panels are overlapped four to six-inches and fusion seamed together.

18. September 2002 (Looking North): A crew member grinds the liner surface in preparation for extrusion welding a liner "skirt" around an ISVE well. The grinder roughs the surface to give the extrusion weld a better hold.

19. September 2002 (Looking South): Surveyors document the liner extents as well as liner panel, seam, testing, and repair locations.


20. September 2002: A sample is cut from a field weld for destructive testing. The sample is tested both in the field and in the laboratory for shear and peel adhesion strength. The area where the sample is cut from is then patched and tested nondestructively.

21. September 2002: A vacuum box is used to nondestructively test extrusion welds. Soapy water is first applied to the weld. The vacuum box is then placed over the weld and is subjected to a low vacuum. If soap bubbles form along the weld, the weld contains deficiencies and needs to be repaired.

22. September 2002: A fusion weld connecting two adjoining panels is nondestructively testing using a pressure test method. The seam is sealed off at both ends and pressurized to at least 25 pounds per square inch (psi). To pass, the seam pressure must not vary by more than four psi over the five minute testing period.

23. September 2002 (Looking East): A liner crew member applies extrusion welding around the foundation of the blower shed. The liner is welded to a continuous FML embedment strip along the blower shed foundation.


24. September 2002 (Looking South): The liner is placed in the perimeter anchor trench and later covered with clay, root zone, and topsoil.

25. September 2002 (Looking Southeast): An view of the completed FML liner.

26. September 2002 (Looking North): An excavator loads previously stockpiled wetland sand material into an off-road dump truck from the Off-Site Area stockpile for use as root zone.

27. September 2002 (Looking North): Wetland sand material is placed as root zone in the southern portion of the Off-Site Area.

28. September 2002 (Looking Southeast): Material is also imported from two off-site locations (one in Merrillville, one in Griffith) for use as root zone. A dozer spreads the root zone over the installed liner in one 12-inch lift.

29. September 2002 (Looking Northwest): A temporary access road is first constructed of root zone material to allow dump trucks to enter the FML liner area to place imported root zone material.

30. September 2002: A nuclear density testing unit is used to test the moisture content and compaction at various locations across the root zone area.

31. October 2002 (Looking Northeast): Six-inches of imported topsoil is placed on top of the root zone over the entire FML Cover Area.

32. October 2002 (Looking South): A view of the completed Off-Site Area Final Engineered Cover. Topsoil and grass seed have been placed over the entire FML Cover Area. Yellow straw is visible, placed over the grass seed as erosion control.

33. October 2002 (Looking Southwest): Seaming the new boot and skirt on ISVE well, SVE-38, after the well casing has been repaired.

34. October 2002 (Looking Southwest): A vacuum box test is performed on boot and skirt on the repaired ISVE well, SVE-38.

35. August 2003 (Looking East): Area with deficient topsoil thickness after it has been scarified.

36. August 2003 (Looking Southeast): Area with deficient topsoil thickness after additional topsoil has been placed.

37. August 2003 (Looking Southeast): Area with previously deficient topsoil thickness after being raked and seeded.

38. August 2003 (Looking Southeast): Area with previously deficient topsoil thickness after straw is placed over the seeded topsoil.

APPENDIX C

COMPACTION AND MOISTURE TESTING RESULTS OF CLAY MATERIAL (GREAT LAKES)

	J	Ĭ	
17.5	1		•
1,5	ţ		4
	į		LK.
	ſ		

Great Lakes Soil & Environmental Consultants, Inc. 333 Shore Drive, Burr Ridge, IL 60521 Ph.: (630) 321-0944 Fax: (630) 321-0945

Field Density Test Report (Nuclear Density Test)

٠.,	-												
										Page		1061	
Pr	واو	ct:	A	Merican Chemical NWH 05 6-02 dor Compaction: Sheen									
c	Ιδη	t:		merican Chemical MWH							···		
Fi	41	lo.	22	05	***								
ام	te		17-2	6-02			· · · · · · · · · · · · · · · · · · · 					, - , - , - , - , - , - , - , - , - , -	
뗏	9 6	Equ	ulpment Use	d for Compaction: Steer	ps ft.					Specif	ication:	9520	d 17%
N	1.5	st ber	Refest Ref. No.	Location of Test	Elevation/ Lift No.	Soli Decsription	Probe Depth (inches)	Wet Density (pcf)	Dry Density (pcf)	Moisture (%)	Proctor (pcf)	% Compaction	Pass Fali
	Û	7		# 1	Gin belan!	-,6. CAY	Gin	-	109.3	12.9	115-0	95.0	PASS
7	Z	2		#2	ф	4	b)	109.4		de	95.1	4
			l									,	
1													
1	H					<u> </u>							
\vdash	H												
-	1												
+	1												
+	H				 -		 						
1	1				- 		 						
\vdash	Ħ	-				······································		,					
+	Ħ												
+	H						 						
+	$\dagger \dagger$											[
+	H												
+	$\dagger \dagger$				+								
+	╁╁												
+	H						 						
4	H		L1	10			<u> </u>					l	
Tø	1	d By	<i>(</i> :	X (1)									
1			1	11 V									
Ren	Park												
+	H												

	1	L	1	_
	ŕ	ŧ		
	t	٨	7	į
Н	į	2	20	2
	:	ī	I	
	Ŧ	I	1	
	ı	ļ	1	

Great Lakes Soil & Environmental Consultants, Inc. 333 Shore Drive, Burr Ridge, IL 60521 Ph.: (630) 321-0944 Fax: (630) 321-0945

Fleid Density Test Report (Nuclear Density Test)

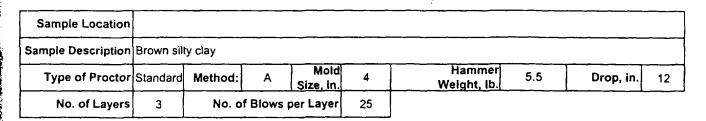
	······································							Page		04	
Bedlect:	An	orican chemical									
Project: Client:	- /YV//	MW It									
File No.	22										
Date		7-02		-				·····			
Type of Eq	ulpment Used f		Sheeps +	J.				Speci	fication:	950%	A1780
	·							·			
Test Number	Retest Ref. No.	Location of Test	Elevation/ Lift No.	Soil Decsription	Probe Depth (inches)	Wet Density (pcf)	Dry Density (pcf)	Moisture (%)	Proctor (pcf)	% Compaction	Pass Fail
		女3	612 below	6.6. CAY	6in		109.4	18.0	15.0	95.1	P.055
(2)		#4				~	109.3	18.6		95.1	
(3)		# 5				_	110.4	17.3		96.0	
(44)		#6	7			_	109.6			95.3	
	1	#7				_	166.4	14.0		95.7	
100	1	# 8					00.4	18.0		95.2	
12		#9				~	10,64	# 17.(0	96.2	
10		#10					104.7	19.0		95.4	
(4)		# 11	6	- Ø	4		104.3	14.2	+	95-0	8
											
 	 	 				,			 -		
 	 -										
├-┼┼┼ -											
<u> </u>	 -										
											
	l							<u></u>			
	1										
			L					<u></u>			, <u> </u>
Tested B	<u>y:</u>										
Remarks:	T										

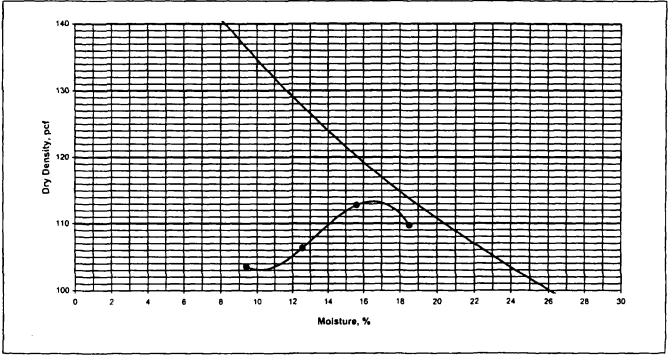
r	
ì	40.
ł	- 170
ı	B CX,
ı	V 40-
ı	

Great Lakes Soil & Environmental Consultants, Inc. 333 Shore Drive, Burr Ridge, IL 60521 Ph.: (630) 321-0944 Fax: (630) 321-0945

Fleid Density Test Report (Nuclear Density Test)

_			303 311014 21110;	Dan 11age, 12 0002	· · · · · ·	(000) 021-0					ł	(Nuclea)	Delisity 14	5()
	\prod										Page	/	10FT	
ρ,	diec	.]	Brevican 1	chamical										
C	int:	`	MWH	21 60V, Da 1										
FI	dNo	. 22	05	·····										
D	te		1-02											······································
Ту	00		ed for Compaction:	Shoup	5_	Fot.					Specif	lication:	95.0	+17%
	\coprod													
N	حصل	Retest er Ref. No.	Location of Te	Lin	No.		Decsription	Probe Depth (Inches)	Wet Density (pcf)	Dry Density (pcf)	Moisture (%)	Proctor (pcf)	% Compaction	<u>Pasa</u> Fall
			#12	614	below	u F.6.	Elay	Gini	-	109,3	17.6	115.0	95.0	PASS
	ZI)	_	# 13						}	109.4	18.0	I	95.1	1
			#14						~	110-1	17.5		95.7	
7	7		#15	11_						108.5	17.2	[95.2	
			# 1/20						_	110.0	18-5		95.0	
	6		#17	de	7				\$	109.9	14.0		95.5	
			#18	F. C	2				~	109.6	17.0		45,3	
7	193	21	<u> </u>							109,9	18.7		95.5	
	171		#20							1093	18,0		95 0	
4	10		# 21							69.2	17.0		95.0	
	TIL)	422						~	109.3	18.0		95.0	
_	M		# 23							110.6	17.4		9/0,1	
			# 24						. —	109,6	14.7		95,3	
	Q L		# 25			·				109.2	17.0		95.0	
	كال		1126						_	113.0			98.2	
	T		+ 27							109.3	18.1		95.0	
	7		# 29							111.4	17.6		96,6	
			p 30							112.1	17.4		91.4	
	W.		\$ 31						_	110,7	18.0		46,2	
	G.		\$32 1 5 # 33								19.2		95.1	
- 1			1/5#33		7		y	10]	109.5	17.0	d	95.2	Y
-	740	DY:			-				<u>-</u>			an allegaries		_
	arks:	I												
	\prod													
7	$I^{-}I^{-}$													


Great Lakes Soil & Environmental Consultants Inc.


333 Shore Drive, Burr Ridge, IL 60521 Ph: (630) 321-0944 Fax: (630) 321-0945

MOISTURE - DENSITY RELATIONSHIP CURVE

ASTM D698-91

Project	ACS Superfun	ACS Superfund Site-Field and Laboratory Testing Services										
Client	Koester Enviro	Koester Environmental Services 14649 Highway 41 North, Evansville, IN 47725 Attn.: Mr. Jeff Wickham										
File No.	2205	2205 Sample # BS-1 Date Tested 7/24/2001 Tested By SR										
						Qc By	SB					

Zero Air Void Curve Specific Gravity: 2.75

Results					
Maximum Dry Density, pcf	1135	Optimum Moisture Content, %	16.5	Natural Moisture Content, %	9.5

Remarks					
	 	 			
1					1

APPENDIX D

COMPACTION AND MOISTURE TESTING RESULTS FOR TEST PAD (K&S)

SEP 1 8 2007

		9715 F			ngineers, land, IN 46322			FIELD COMPACTION TEST				
0.316.21	of 52 P. Lo	Illi 90 Ni O. Bo ves P	nois mtz ox 20 Park,	, Inc, Road	111	R 4 1	CS 10 S. Co		FILE NO. 6783 DATE: 9-4-02 REPORT NO. 1 SHEET 1 OF 1			
		TYPE	OF FII	LL	со	MPACT	ION OF GR	ADE	METHOD OF COMPACTION			
STC	NE				MOIST		FROZEN		VIBRATING PLATE	_		
-SAN	ID				DAMP	х	SOFT		VIBRATING ROLLER X	-		
CLA	Υ (TOPS	OIL)	х	WET	WET LOOSE			SHEEPS FOOT ROLLER			
LA	G				DRY		FIRM	Х	RUBBER TIRE ROLLER			
		L	ABORA	ATORY DA	TA AND I	ROCED	URES		FIELD TEST METHOD			
AST	M D	1557 - 9	1		МЕТН	OD			ASTM D 1556 - 90	-		
\S7	M D	698 - 91		X	МЕТН	OD	A		ASTM D 3017 - 93 X	_		
-									OTHER			
				: 4					SPECIFICATON REQUIREMENTS			
				PCF <u>97.</u>					% MAXIMUM DENSITY			
OP 2	OPTIMUM MOISTURE% 21.5							 _	% RELATIVE DENSITY			
_	DATE REF. TEST DRY MOISTURE COMPAC- PASS No. DENSITY PERCENT TION OR PCF FAIL FAIL									_		
_	TE						1	TEST	LOCATION OF TEST			
DA			No.	DENSITY		TION	OR FAIL					
DA	4_"	No. 4 MWH, June 2004) 4 MWH, June	No. 1	DENSITY PCF	PERCENT	TION %	OR FAIL	10' N	PAD	·		
) —	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1	DENSITY PCF	PERCENT	94.2	OR FAIL	10' N 20' N	PAD & 5' E OF SOUTH WEST CORNER	<u>·</u>		
)- 9-	4_0	No. 4 MWH, June 2004) 4 MWH, June 2004)	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			
)- 9-	4_0	Mo. 4 MWH, June 2004) 4 MWH, June 2004) 4 MWH, June	No. 1 2	DENSITY PCF 91.4 94.3	17.1 13.6	94.2 97.2	OR FAIL	10' N 20' N	& 5' E OF SOUTH WEST CORNER & 10' E OF SOUTH WEST CORNER			

			نہ
			, L
			لمد
			ٺ
			نہ
			;
			_!

APPENDIX E

FACTORY TEST RECORDS FOR FML MATERIAL (POLY-FLEX)

- Poly-Flex Warranty LetterPoly-Flex Certification Documents

• Poly-Flex Warranty Letter

2000 W. Marshall Drive Grand Prairie, Texas 75051 USA

888-765-9359

972-337-7113

FAX 972-337-7233

10 September, 2002

Steve Palmer Environmental Contractors of IL 5290 Nimtz Rd Loves Park, IL 61111

Dear Steve,

Re: American Chemical Service Inc. Site

Poly-Flex, Inc. LLDPE textured and smooth liners are suitable for exposed applications and are warranted for up to 20 years in exposed applications.

Please let me know if you need any additional information.

Bęst regards,

Anne Steacy

Regional Sales Manager

Poly-Flex, Inc.

Cc: Jennifer Battle/Mid America Lining

Poly-Flex Certification Documents

888-765-9359

972-337-7113

FAX 972-337-7233

CERTIFICATION DOCUMENTS

To:

Attn:

Environmental Contractors of Illinois

P.O. Box 2071

Loves Park, IL61130

Daryl Streed

Fax No: 815-636-4304

Number of pages including cover:

Date:

Trip No:

8/28/02

Poly-Flex Proj #:

220677

Customer PO: Project Name:

15506 ECI

Departure Date:

8/27/02

Destination:

Griffith, IN

Carrier:

149508

Additional Notes:

Distribution of Documents:

Shipment Inspection Sheet:

1

Roll Certification:

1

Resin Certification:

1

Other:

Attached please find documents for the above referenced shipment. Please let us know if you have any questions.

Sincerely,

Russell Searcey

1-888-765-9359 ext 7269

CERT	ΓIFIC	ATION S	SHEET DATE: Augu				August 28, 2002 POLY-FLEX, IN			
PROJE	ECT NO:	22067	7		RDER NO:	48:	3654		00 W. Marshall Prairie, Texas	
T	RIP NO:	14950	8	CER	TIFIED BY:	That	obers	_		
	TEST L	DESCRIPTION	THICKNESS	CARBON BLACK	TEAR	PUNCTURE C	TENSILE @ BREAK	ELONG @ BREAK	CAR. BLK. DISPERSION	DENSITY
	AS	STM METHOD	D5199	D1603	D1004	4833	D638	D638	D3015	D1505
	(n	nodifications)	min/avg							
		UNITS	mils	%	lb	<u>Ib</u>	ppi	%		gm/cc
		ECIFICATION	54/60	2.0-3.0	33	84	228	560	A1,A2,B1	0.939
ROLL N	JMBER	BLEND								
P9-6-02	28-5	8120674	54/ 62	2.7	46	118	276	885	A-2	0.937
P9-6-02	30-5	8120674	54/ 62	2.7	47	122	293	898	A-2	0.937
P9-6-02	34-5	8120674	54/ 62	2.7	44	124	283	913	A-2	0.937
P9-6-02	35-5	8120674	54/ 62	2.7	44	124	283	913	A-2	0.937
P9-6-02	41-5	8120674	54/ 61	2.9	43	116	281	942	A-1	0.937
P9-6-02	42-5	8120674	54/ 61	2.3	44	122	272	828	A-1	0.937
P9-6-02	45-5	8120674	54/ 61	2.3	42	123	278	940	A-1	0.937
P9-6-02	46-5	8120674	54/ 61	2.3	42	123	278	940	A-1	0.937
P9-6-02	47-5	8120674	54/ 61	2.3	42	123	278	940	A-1	0.937
P9-6-02	48-5	8120674	54/ 61	2.3	46	120	283	854	A-2	0.937
P9-6-02	49-5	8120674	54/ 62	2.3	46	120	283	854	A-2	0.937
P9-6-02	50-5	8120674	54/ 62	2.3	46	120	283	854	A-2	0.937
									<u> </u>	
								 	 	
 				 				 	 	

Poly-Flex

Geomembrane Shipment Inspection

FUI	A-LICY			00	ornernbrane	Chipment ins	heerous
Tractor #		_ Traile	er#	Date: _	27-Aug-02	_ TRIP _	149508
Drop #	. 1	Drop#	1	Drop #		Drop#	
Poly-Flex #	220677(483654)	Poly-Flex #	220677(484126)	Poly-Flex #		Poly-Flex#	
Customer:	ENVRO CONT.	Customer:	ENVRO CONT.	Customer:		Customer:	
Destination:	GRIFFITH, IN	Destination:	GRIFFITH, IN	Destination:		Destination:	· · · · · ·
Carrier:		Carrier:		Carrier:		Carrier:	

	Blend	Roll Number	Weight	Roll Description
1	8120674	P9-6-02- 0034- 6	3,509	23' X 500' X .060LL
2	8120674	P9-6-02- 0030- 6	3,507	23' X 500' X .060LL
3	8120674	P9-6-02- 0047- 6	3,494	23' X 500' X .060LL
4	8120674	P9-6-02- 0042- 6	3,491	23' X 500' X .060LL
5	8120674	P9-6-02- 0041- 6	3,471	23' X 500' X .060LL
6	8120674	P9-6-02- 0048- 6	3,475	23' X 500' X .060LL
7	8120674	P9-6-02- 0050- 6	3,501	23' X 500' X .060LL
8	8120674	P9-6-02- 0028- 6	3,515	23' X 500' X .060LL
9	8120674	P9-6-02- 0035- 6	3,515	23' X 500' X .060LL
10	8120674	P9-6-02- 0045- 6	3,491	23' X 500' X .060LL
11	8120674	P9-6-02- 0049- 6	3,495	23' X 500' X .060LL
12	8120674	P9-6-02- 0046- 6	3,473	23' X 500' X .060LL
13		P56-05-(719- 724)- 5	180	5MM GEI - WELDONG ROD - LL
14				
15				
16				
17				
18				
19			42,117	
20		<u> </u>	·	
21				
22				
23				
24				
25				
26				
27				
28				

I certify that all loading requirements and roll conditions were inspected and approved.

-					1
	71	\sim	1 /	\mathbf{r}	der
	14	w		va	ucı

Houston Cherhical Complex P.O. Box 792, Passdone, TX 77501 June 10, 2002

PSN# 13415-02

FAX: 972-337-7407

Poly America, Inc. 2000 West Marshall Drive Grand Prairie, TX 75051

Dee Averitte

This letter will certify that the Marlex* resin shown below, as supplied by Chevron Phillips Chemical Company, conforms to our manufacturing specification.

Type: Lot Number: P.O. Number: Date Shipped:

8120674 60039 06/10/02 CHVX898197 178000 LBS.

K203

Package: Quantity:

Melt Index, ASTM D1238: .210 G/10 MIN Density, ASTM D1505: .923 G/CC

HLMI Flow Rate, ASTM D1238: 16.8 G/10 MIN

Production Date:

05/11/02

Paul S. Newbold Sr. Certification Systems Specialist

For COA questions call Carol Meza, 713-475-3625

* Reg. U.S. Pat. Off.

cc: QA-File-RC

Lisa FAX: 972-337-7233 Jim Nobert

FAX: 972-337-7396

Date:

Trip No:

2000 W. Marshall Drive Grand Prairie, Texas 75051 USA

Poly-Flex Proj #:

Customer PO:

Project Name:

888-765-9359

972-337-7113

FAX 972-337-7233

8/29/02

220677

15506

ECI

149509

CERTIFICATION DOCUMENTS

To:

Attn:

Environmental Contractors of Illinois

P.O. Box 2071

Loves Park, IL61130

Daryl Streed

Fax No: 815-636-4304

Number of pages including cover:

Departure Date:

8/28/02

Destination:

Griffith, 1N

Carrier:

Additional Notes:

Distribution of Documents:

Shipment Inspection Sheet:

1

Roll Certification:

1

Resin Certification:

1

Other:

Attached please find documents for the above referenced shipment. Please let us know if you have any questions.

Sincerely

Russell Searcey

1-888-765-9359 ext 7269

CEK	ATION :	SHEET DATE:			August	August 28, 2002		Y-FLEX	•	
PROJE	ECT NO:	22067	7		RDER NO:	√ 48:	3657		Prairie, Texa	
Т	RIP NO:	14950	9	CER	TIFIED BY:	J. Just	olsh	<u> </u>		
	TEST L	DESCRIPTION	THICKNESS	CARBON BLACK	TEAR	PUNCTURE	TENSILE @ BREAK	ELONG @ BREAK	CAR. BLK. DISPERSION	DENSITY
	AS	STM METHOD	D5199	D1603	D1004	4833	D638	D638	D3015	D1505
····	(n	nodifications)	min/avg		·					
		UNITS	mils	%	lb	<u>Ib</u>	ppi	%		gm/cc
		ECIFICATION	54/60	2.0-3.0	33	84	228	560	A1,A2,B1	0.939
ROLL N	UMBER	BLEND							-	
P9-6-02	16-5	8120674	54/ 61	2.4	43	119	286	940	A 1	0.936
P9-6-02	20-5	8120674	54/ 61	2.3	44	117	294	907	A 1	0.936
P9-6-02	21-5	8120674	54/ 61	2.6	44	121	286	913	A 1	0.936
P9-6-02	24-5	8120674	59/ 62	2.6	50	122	307	876	A 1	0.936
P9-6-02	25-5	8120674	55/ 63	2.6	50	122	307	876	A 1	0.936
P9-6-02	26-5	8120674	54/ 62	2.6	50	122	307	876	A 1	0.936
P9-6-02	27-5	8120674	54/ 62	2.7	46	118	276	885	A 2	0.937
P9-6-02	29-5	8120674	54/ 62	2.7	46	118	276	885	A 2	0.937
P9-6-02	31-5	8120674	54/ 62	2.7	47	122	293	898	A 2	0.937
P9-6-02	32-5	8120674	54/ 62	2.7	47	122	293	898	A 2	0.937
P9-6-02	43-5	8120674	54/ 61	2.3	44	122	272	828	A 1	0.937
P9-6-02	44-5	8120674	55/ 61	2.3	44	122	272	828	A 1	0.937
	 , -									
			 		-		<u> </u>			

Po	lv-	Fi	ex
----	-----	----	----

Geomembrane Shipment Inspection

FUI	Y-I ICA		00011	ment mapedaon	
Tractor #		Trailer #	Date:	28-Aug-02 T	RIP 149509
Drop#	1	Drop#	Drop #	Drop) #
Poly-Flex#	220677(483657)	Poly-Flex #	Poly-Flex#	Poly	-Fiex#
Customer:	ENVIRO. CONT.	Customer:	Customer:	Cust	omer:
Destination:	GRIFFITH, IN	Destination:	Destination:	Dest	ination:
Carrier:		Carrier:	Carrier:	Сал	ier:

[Blend	Roll Number	Weight	Roll Description
1	8120674	P9-6-02- 0016- 5	3,473	23' X 500' X .060LL
2	8120674	P9-6-02- 0020- 5	3,480	23' X 500' X .060LL
3	8120674	P9-6-02- 0021- 5	3,489	23' X 500' X .060LL
4	8120674	P9-6-02- 0024- 5	3,515	23' X 500' X .060LL
5	8120674	P9-6-02- 0025- 5	3,585	23' X 500' X .060LL
6	8120674	P9-6-02- 0026- 5	3,519	23' X 500' X .060LL
7	8120674	P9-6-02- 0027- 5	3,513	23' X 500' X .060LL
8	8120674	P9-6-02- 0029- 5	3,511	23' X 500' X .060LL
9	8120674	P9-6-02- 0031- 5	3,503	23' X 500' X .060LL
10	8120674	P9-6-02- 0032- 5	3,505	23' X 500' X .060LL
11	8120674	P9-6-02- 0043- 5	3,483	23' X 500' X .060LL
12	8120674	P9-6-02- 0044- 5	3,477	23' X 500' X .060LL
13				
14				
15				
16				
17				
18				
19			42,053	
20				
21				
22				
23				
24				
25				
26				
27				
28				

	quirements and roll conditions were inspected and approved.
--	---

Truck	Loader

Houston Chemical Complex P.O. Box 792, Passdens, TX 77501

June 10, 2002

PSN# 13415-02

FAX: 972-337-7407

Poly America, Inc. 2000 West Marshall Drive Grand Prairie, TX 75051

Dee Averitte

This letter will certify that the Marlex* resin shown below, as supplied by Chevron Phillips Chemical Company, conforms to our manufacturing specification.

Type: K203 Lot Number: 8120674 P.O. Number: 60039 Date Shipped: 06/10/02 CHVX898197 Package: Quantity: 178000 LBS. Melt Index, ASTM D1238: .210 G/10 MIN .923 G/CC Density, ASTM D1505: HIMI Flow Rate, ASTM D1238: 16.8 G/10 MIN Production Date: 05/11/02

Paul S. Newbold Sr. Certification Systems Specialist

For COA questions call Carol Meza, 713-475-3625

* Reg. U.S. Pat. Off.

cc: QA-File-RC

Lisa Jim Nobert

FAX: 972-337-7233 FAX: 972-337-7396

2000 W. Marshall Drive Grand Prairie, Texas 75051 USA

888-765-9359

972-337-7113

FAX 972-337-7233

CERTIFICATION DOCUMENTS

To:

Environmental Contractors of Illinois

P.O. Box 2071

Loves Park, IL61130

Attn:

Daryl Streed

Fax No: 815-636-4304

Number of pages including cover:

Date.

8/30/02

Poly-Flex Proj #:

220677

Customer PO:

15506

Project Name: ECI

Departure Date:

8/29/02

Destination:

Griffith, IN

Carrier:

_

4

Trip No:

149661

Additional Notes:

Distribution of Documents:

Shipment Inspection Sheet:

1

Roll Certification:

1

Resin Certification:

1

Other:

Attached please find documents for the above referenced shipment. Please let us know if you have any questions.

Sincerely,

Russell Searcey

1-888-765-9359 ext 7269

CER	ΓIFIC	ATION	SHEE	T	DATE:	August	30, 2002	_	Y-FLEX	•
PROJE	ECT NO:	22067	7		RDER NO:	√ 48:	3658		Prairie, Texas	
Т	RIP NO:	14966	1	CER	TIFIED BY:	J. Jac	open	-		
	TEST L	DESCRIPTION	THICKNESS	CARBON BLACK	TEAR	PUNCTURE C	TENSILE @ BREAK	ELONG @ BREAK	CAR. BLK. DISPERSION	DENSITY
	AS	STM METHOD	D5199	D1603	D1004	4833	D638	D638	D3015	D1505
	(n	nodifications)	min/avg							
<u> </u>	······································	UNITS	mils	%	lb	lb	ppi	%		gm/cc
	SP	ECIFICATION	54/60	2.0-3.0	33	84	228	560	A1,A2,B1	0.939
ROLL N	UMBER	BLEND								
P9-6-02	5-5	8120674	54/ 61	2.1	49	112	275	872	A-1	0.935
P9-6-02	6-5	8120674	54/ 61	2.9	47	124	272	850	A-1	0.937
P9-6-02	7-5	8120674	54/ 63	2.9	47	124	272	850	A-1	0.937
P9-6-02	36-5	8120674	54/ 62	2.7	46	121	285	872	A-1	0.937
								<u> </u>		
									<u> </u>	
			 	1	1		 	 	 	

Houston Chemical Complex P.O. Box 792, Pasadens, TX 77501 June 10, 2002

PSN# 13415-02

FAX: 972-337-7407

Poly America, Inc. 2000 West Marshall Drive Grand Prairie, TX 75051

Dee Averitte

This letter will certify that the Marlex* resin shown below, as supplied by Chevron Phillips Chemical Company, conforms to our manufacturing specification.

Type: K203
Lot Number: 8120674
P.O. Number: 60039
Date Shipped: 06/10/02
Packtage: CHVX898197
Quantity: 178000 LBS.
Melt Index, ASTM D1238: .210 G/10 MIN
Density, ASTM D1505: .923 G/CC
HIMI Flow Rate, ASTM D1238: 16.8 G/10 MIN

Production Date: 05/11/02

Paul S. Newbold Sr. Certification Systems Specialist

For COA questions call Carol Meza, 713-475-3625

* Reg. U.S. Pat. Off.

cc: OA-File-RC

Lisa Jim Nobert

FAX: 972-337-7233 FAX: 972-337-7396

Poly-Flex

Geomembrane Shipment Inspection

	- Irail	er#	Date:	29-Aug-02	_ TRIP _	149661
., 1	Drop #	2	Drop#		Drop#	
220677(483658)	Poly-Flex #	225132(474976)	Poly-Fiex #		Poly-Flex #	
ENVIRO CONTR.	Customer:	C & C	Customer:		Customer:	
GRIFFITH, IN	Destination:	MARSHALL. MI	Destination:		Destination:	
	Carrier:		Carrier:		— — — — — — — — — — — — — — — — — — —	
	ENVIRO CONTR.	220677(483658) Poly-Flex # ENVIRO CONTR. Customer: GRIFFITH, IN Destination:	220677(483658) Poly-Flex # 225132(474976) ENVIRO CONTR. Customer: C & C GRIFFITH, IN Destination: MARSHALL MI	220677(483658) Poly-Flex # 225132(474976) Poly-Flex # ENVIRO CONTR. Customer: C & C Customer: GRIFFITH, IN Destination: MARSHALL MI Destination:	220677(483658) Poly-Flex # 225132(474976) Poly-Flex # ENVIRO CONTR. Customer: C & C Customer: GRIFFITH, IN Destination: MARSHALL MI Destination:	220677(483658) Poly-Flex # 225132(474976) Poly-Flex # Poly-Flex # ENVIRO CONTR. Customer: C & C Customer: Customer: GRIFFITH, IN Destination: MARSHALL. MI Destination: Destination:

	Blend	Roll Number	Weight	Roll Description
1.	8120674	P9-6-02- 0005- 5	3,453	23' X 500' X .060LL
2	8120674	P9-6-02- 0006- 5	3,481	23' X 500' X .060LL
3	8120674	P9-6-02- 0007- 5	3,601	23' X 500' X .060LL
4	8120674	P9-6-02- 0036- 5	3,461	23' X 500' X .060LL
5				
6	8101439	PR-6-01- 0122- X	3,628	23' X 375' X .060LLT
72	8101439	PR-6-01- 0123- X	3,558	23' X 375' X .060LLT
8	8101439	PR-6-01- 0124- X	3,548	23' X 375' X .060LLT
9	8101439	PR-6-01- 0125- X	3,660	23' X 375' X .060LLT
10	8101439	PR-6-01- 0126- X	3,664	23' X 375' X .060LLT
70	8101439	PR-6-01- 0127- X	3,698	23' X 375' X .060LLT
12	8101439	PR-6-01- 0128- X	3,698	23' X 375' X .060LLT
131	8101439	PR-6-01- 0129- X	3,696	23' X 375' X .060LLT
14				
15				
16				
17				
18				
19			43,146	
20				
21				
22				
23				
24				
25				
26				
27				
28				

I certify that all loading requirements and roll conditions were inspected and approved.

Tei	ick !	ander .

APPENDIX F

FIELD TEST RECORDS FOR FML INSTALLATION (MID-AMERICA LINING)

- Certificates of Acceptance of Soil Subgrade Surface
- Panel Placement Log
- Panel Seaming Form
- Non-Destructive Test Log
- Field Destructive Test Log
- Laboratory Destructive Test Results
- Repair Log
- Trial Weld Log
- Quality Control (QC) Daily Field Report
- Certificate of Acceptance for Installed FML

• Certificates of Acceptance of Soil Subgrade Surface

Certificate of Acceptance of Soil Subgrade Surface

Date:	9 / 05 / 02		
Project Nan	ne:	American Chemical Services	
Project Loc	ation:	Griffin, IN	
Owners Rep	oresentative:	E.C.I.	
have visually		epersentative of Mid - America Lining Company (MAL), rade surface described below, and found it to be an ill geomembrane.	
inspections o warranties re	or tests have been perfo egarding conditions which	ations of the surface of subgrade only. No subterranear rmed by MAL, and MAL makes no representations or th must exist below the surface of the subgrade. MAL formance of the subgrade to this project's spefications.	
Area Being	Accepted :	Panels 1 - 18	
Mid - Ameri	ca Lining Company Re	presentative:	
Date :		9 / 05 / 02	
Print Name :		Robertson, Eric, D,	
Signature <u>:</u>	······································	C 5-12/2	
Owners/Ow	ners Representative:		
Date :	9-6-02		
Print Name :	Steve Sa	Iner	
Signature :	I tom So	'lm	
Title <u>: S /</u>	te Syperu	.50~	

Certificate of Acceptance of Soil Subgrade Surface

Date: 9 / 06 / 0	2		
Project Name:	American Chemical Services		
Project Location:	Griffin, IN		
Owners Representative:	E.C.I.		
	opointed repersentative of Mid - America Lining Company (MAL), soil subgrade surface described below, and found it to be an ch to install geomembrane.		
inspections or tests have by warranties regarding condi-	on observations of the surface of subgrade only. No subterraneal een performed by MAL, and MAL makes no representations or tions which must exist below the surface of the subgrade. MAL or the conformance of the subgrade to this project's spefications.		
Area Being Accepted :	Panels 19 - 37		
Mid - America Lining Con	npany Representative:		
Date :	9 / 06 / 02		
Print Name :	Robertson, Eric, D.		
Signature :	- AH		
Title:	Field QC		
Owners/Owners Represe	ntative:		
Date :	9 / 06 / 02		
Print Name :	Palmer, Steve		
Signature : Slin	Bolum		
Title:	Site Supervisor		

MID - AMERICA LINING CO.

Certificate of Acceptance of Soil Subgrade Surface

Date: 9 / 0	7 / 02
Project Name:	American Chemical Services
Project Location:	Griffin, IN
Owners Representati	ve: E.C.I.
have visually observed	ly appointed repersentative of Mid - America Lining Company (MAL), the soil subgrade surface described below, and found it to be an which to install geomembrane.
inspections or tests ha warranties regarding c	sed on observations of the surface of subgrade only. No subterranear ve been performed by MAL, and MAL makes no representations or onditions which must exist below the surface of the subgrade. MAL ity for the conformance of the subgrade to this project's spefications.
Area Being Accepted	: Panels 38 - 61
Mid - America Lining	Company Representative:
Date :	9 / 07 / 02
Print Name :	Robertson, Eric, D.
Signature :	co-Roll
Title:	Field QC
Owners/Owners Repr	esentative:
Date :	9 / 07 / 02
Print Name :	Palmer, Steve
Signature :	Ster Volume
Title <u>:</u>	Site Supervisor

• Panel Placement Log

		_	
Panel	Placement	l oa	

Pa	g	e:	' 1	0	İ	
	•					

Project Name: American Chemical Services	Date:	9/5/02	
--	-------	--------	--

Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

Panel Number	Roll Number	Panel Length	Panel Width	Square Footage	Comments
1	0043	328	22.5	7380	
2	0043	112	22.5	2520	
3	0049	240	22.5	5400	
4	0049	240	22.5	5400	
5	0050	136	22.5	3060	
6	0050	346	22.5	7785	
7	0045	34	22.5	765	
8	0045	386	22.5	8685	
9	0045	50	22.5	1125	
10	0048	340	22.5	7650	
11	0048	144	22.5	3240	
12	0041	246	22.5	5535	
13	0041	238	22.5	5355	
14	0047	234	22.5	5265	
15	0047	332	22.5	7470	
16	0034	68	22.5	1530	
17	0034	408	22.5	9180	
18	0030	414	22.5	9315	

12/00 - I.D.R.

Daily Square Footage Square Footage to Date 96,660

96,660

Page:	2	of:	
	_	<i>U1.</i>	

Panel Placement Log

Project Name:	American Chemical Services	Date:	9/6/02	

Material Description: 60 Mil L.L.D.P.E. Project Location: Griffin, IN

Panel Number	Roll Number	Panel Length	Panel Width	Square Footage	Comments
19	0030	68	22.5	1530	
20	0035	364	22.5	8190	
21	0035	128	22.5	2880	
22	0042	306	22.5	6885	
23	0042	182	22.5	4095	
24	0046	250	22.5	5625	
25	0046	220	22.5	4950	
26	0005	172	22.5	3870	
27	0005	240	22.5	5400	
28	0036	182	22.5	4095	
29	0036	306	22.5	6885	
30	0006	112	22.5	2520	
31	0006	374	22.5	8415	
32	0028	40	22.5	900	
33	0028	412	22.5	9270	
34	0028	28	22.5	630	
35	0007	376	22.5	8460	
36	0007	106	22.5	2385	
37	0025	296	22.5	6660	

12/00 - F.D.R

Daily Square Footage Square Footage to Date 93,645

190,305

Q.C. Initials: $\mathcal{L}.\mathcal{D}.\mathcal{R}$

Page: 3 of: 4

Panel Placement Log

Project Name:	American Chemical Services	Date:	9/7/02	

Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

Panel Number	Roll Number	Panel Length	Panel Width	Square Footage	Comments
38	0025	154	22.5	3465	
39	0026	244	22.5	5490	
40	0026	244	22.5	5490	
41	0027	156	22.5	3510	
42	0027	322	22.5	7245	
43	0024	-82	22.5	-1845	
44	0024	84	22.5	1890	
45	0032	26	22.5	585	
46	0032	406	22.5	9135	
47	0032	44	22.5	990	
48	0016	354	22.5	7965	
49	0016	136	22.5	3060	
50	0020	252	22.5	5670	
51	0020	226	22.5	5085	
52	0029	144	22.5	3240	
53	0029	310	22.5	6975	
54	0031	14	22.5	315	
55	0031	258	22.5	5805	
56 12/00 - £.D.R	0031	162	22.5	3645	

12/00 - *E.D.R*

Daily Square Footage Cont.

Square Footage to Date Cont.

Q.C. Initials: £.D.R.

Page:	4	of:	4
		•••	

Panel Placement Log	Pane	l Pla	cem	ent	Lo	O
---------------------	------	-------	-----	-----	----	---

Project Name: _	American Chemical Services	Date:	9/7/02	
-----------------	----------------------------	-------	--------	--

Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

Panel Number	Roll Number	Panel Length	Panel Width	Square Footage	Comments
57	0044	34	22.5	765	
58	0044	146	22.5	3285	
59	0044	92	22.5	2070	
60	0044	60	22.5	1350	
61	0021	42	22	462	
	·····				
	·· ······				
				•	
					M. 1
			ı	_!	

12/00 - F.D.R.

Daily Square Footage Square Footage to Date 85,647

275,952

Q.C. Initials:

 $\mathcal{I}.\mathcal{D}.\mathcal{R}.$

• Panel Seaming Form

PANEL SEAMING FORM

Page: _ 1 _ of:____

Project Name: American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient	DS Test	Comments
Time	Number	Length	Initials	Number	Setting	Weather	VVIII 103	Temp,	P/F	- Commonts
9/05	1/2	104	MS	C - 1	750	Sunny	5 - 15	75	₽	
08.45h					, 55	Guilly	0 10			
9/05	1/3	232	MS	C-1	750	Sunny	5 - 15	75	Р	
09.18h	1,3	202	1010	0-1	7 30	Guilly	<u> </u>	,,,	<u>'</u>	
9/05	2/3	22.5	MSO	C-4	750	Sunny	5 - 15	75	Р	
09.05h		22.0		U-4	7 50	Curiny	0 10	70	•	
9/05	2/4	122	MSO	C-4	750	Sunny	5 - 15	75	Р	
09.49h		'			700		0 10			
9/05	3/4	118	MSO	C-4	750	Sunny	5 - 15	75	P	
09.55h							-			
9/05	3/5	132	MSO	C-4	750	Sunny	5 - 15	75	Р	
10.10h									·	
9/05	4/5	22.5	MSO	C-4	750	Sunny	5 - 15	75	Р	
09.32h				ļ						
9/05	4/6	242	MS	C - 1	750	Sunny	5 - 15	75	Р	
10.10h	-									
9/05	5/6	110	MS	C - 1	750	Sunny	5 - 15	75	Р	
10.38h								<u></u>		
9/05	. 5/7	30	MS	C - 1	750	Sunny	5 - 15	75	Р	
10.50h 9/05	-				 			<u> </u>		
10.03h	6/7	22.5	MS	C - 1	750	Sunny	5 - 15	75	Р	
9/05	 			 				 		
10.36h	6/8	344	MSO	C-4	750	Sunny	5 - 15	75	Р	
9/05	 -			 	 			 		
11.17h	7/8	40	MSO	C - 4	750	Sunny	5 - 15	75	P	
9/05	 			 	 				 	
12.57h	8 / 10	342	MS	C - 1	750	Sunny	5 - 15	75	P	
9/05	·			 	 		 	 	<u> </u>	
13.36h	8/9	46	MS	C - 1	750	Sunny	5 - 15	75	P	
13.301		<u> </u>		<u> 1</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u></u>

12/00 - T.D.R.

MID AMERICA LONG CO.

PANEL SEAMING FORM

Page: 2 of:

Project Name: American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient		Comments
Time	Number	Length	Initials	Number	Setting	VVCatilei	Willus	Temp.	P/F	Comments
9/05	9/10	22.5	MSO	C - 4	750	Sunny	5 - 15	75	Р	
13.00h	3710	22.0	11130	0 - 4	730	Sullity	3-13	2	F	
9/05	10/11	146	MSO	C - 4	750	Cummu	5 - 15	75	Р	
13.22h	10711	140	WISC	0 - 4	750	Sunny	5-15	75	, , , , , , , , , , , , , , , , , , ,	
9/05	10 / 12	190	MSO	C - 4	750	Cunny	5 - 15	75	Р	
13.42h	10712	190	MISO	U - 4	750	Sunny	5-15	75		
9/05	9 / 12	54	MSO	C - 4	750	Cuani	5 - 15	75	Р	
14.05	9/12	54	MISO	0 - 4	750	Sunny	5-15	75	F	
9/05	11 / 12	22.5	MSO	C - 4	750	Sunny	5 - 15	75	Р	
13.14h	11712	22.5	MISO	0 - 4	750	Sullity	3-15	75	Г	
9/05	11 / 13	144	MS	C - 1	750	Sunny	5 - 15	75	Р	
13.55h	11713	144	IVIO	0-1	750	Sulling	3-13	73	Г 	
9/05	12 / 13	96	MS	C - 1	750	Sunny	5 - 15	75	Р	
14.13h	12713	30	1110	0-1	750	Julily	3 1 1 3	7.0	' 	
9/05	12/14	154	MS	C - 1	750	Sunny	5 - 15	75	Р	
14.23h	12, 14	134	1110	0 1	700	Guilly	0 - 10	7.5		
9/05	13 / 14	22.5	MS	C - 1	750	Sunny	5 - 15	75	Р	
13.50h	137.14	22.0	INIO	0-1	7.50	Culling	3 - 13	, 0	'	
9/05	13 / 15	238	MSO	C-4	750	Sunny	5 - 15	75	P	
14.26h	137.73	200	11100	0 - 4	7.00	Outility	0 - 10	,,,	<u>'</u>	
9/05	14 / 15	98	MSO	C-4	750	Sunny	5 - 15	75	Р	
15.00h	147.10	30	11100	J 7	7.00	Curity	- 10	,,,	'	
9/05	14 / 16	64	MSO	C-4	750	Sunny	5 - 15	75	P	
15.10h	17,10		11100		100	Juliny		,,,	<u>'</u>	
9/05	15 / 16	22.5	MSO	C-4	750	Sunny	5 - 15	75	Р	
14.17h	107.13	22.0	11.00	J 7	, 50	Juliny				
9/05	15 / 17	330	MS	C-1	750	Sunny	5 - 15	75	Р	
14.48h	13717	330	IVIO	0 - 1	/ 30	Jurniy	J - 13		<u> </u>	
9/05	16 / 17	74	MS	C - 1	750	Sunny	5 - 15	75	Р	
15.30h	16717	/	INO		730	Sunny	3 - 15	1	<u> </u>	

12/00 - E.D.R.

Page: _ 3 _ of:_____

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient	DS Test	Comments
Time	Number	Length	Initials	Number	Setting	Weather	Willias	Temp.	P/F	Commence
9 / 05	15 / 16	22.5	MSO	C-4	750	Sunny	5 - 15	75	Р	
14.17h	10, 10	22.0			700	Gaining	0 10		,	
9 / 05	17 / 18	414	MSO	C - 4	750	Sunny	5 - 15	75	Р	
15.30h	.,,,,	7,17			, 00	Cumy	0 ,0	, ,		
9/06	18 / 19	66	MS	C-1	750	Sunny	5 - 15	85	Р	
08.00h	10,15									
9/06	18 / 20	362	MS	C-1	750	Sunny	5 - 15	85	Р	
08.10h										
9/06	19 / 20	22.5	MSO	C-4	750	Sunny	5 - 15	85	Р	
08.07h										
9/06	19 / 21	70	MSO	C-4	750	Sunny	5 - 15	85	Р	
08.48h										
9/06	20 / 21	58	MSO	C-4	750	Sunny	5 - 15	85	P	
09.00h	ļ									
9 / 06	20 / 22	308	MSO	C-4	750	Sunny	5 - 15	85	Р	
09.06h	ļ									
9 / 06	22 / 23	54	MS	C-1	750	Sunny	5 - 15	85	P	
09.58h								 		
9/06	. 22 / 24	252	MS	C - 1	750	Sunny	5 - 15	85	Р	
10.06h	 			ļ			<u> </u>	 		
9 / 06 09.45h	21 / 23	130	MS	C - 1	750	Sunny	5 - 15	85	Р	
9 / 06	 	· · · · · · · · · · · · · · · · · · ·			<u> </u>		 	 		
08.39h	21 / 22	22.5	MSO	C-4	750	Sunny	5 - 15	85	Р	
9 / 06	 			 			 	 		
09.36h	23 / 24	22.5	MS	C - 1	750	Sunny	5 - 15	85	Р	
9 / 06	 			ļ			 	 		
10.00h	23 / 25	182	MSO	C-4	750	Sunny	5 - 15	85	Р	
9 / 06	 			 	-					
	24 / 25	20	MS	C - 1	750	Sunny	5 - 15	85	P	
10.21h		l	l	L	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>

12/00 - E.D.R.

PANEL SEAMING FORM

Page: 4 of:

Project Name:	American Chemical Services	Project Location:	Griffith, IN	Material Description:	60 Mil H.D.P.E.
		-			

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient	DS Test	Comments
Time	Number	Length	Initials	Number	Setting	Weather	VVIIIus	Temp.	P/F	Comments
9/06	24 / 26	196	MSO	C - 4	750	Sunny	5 - 15	75	Р	-
10.36h	247.20	100		0 - 4	700	Guilly	0 10	, 0	<u> </u>	
9/06	26 / 28	170	MS	C - 1	750	Sunny	5 - 15	75	Р	
12.55h	20 / 20	170	1010	0 - 1	, 50	Curiny	<u> </u>	, 5		
9/06	25 / 27	224	MS	C-1	750	Sunny	5 - 15	85	Р	
10.46h	20,2,					Guilly	0 10			
9/06	27 / 28	20	MS	C-1	750	Sunny	5 - 15	85	Р	
12.50h	21,720				, 00	Juliny	<u> </u>			·
9/06	27 / 30	110	MSO	C-4	750	Sunny	5 - 15	85	Р	
13.06h					, 00					
9/06	27 / 29	130	MSO	C-4	750	Sunny	5 - 15	85	Р	
13.19h	21,720					Juliny				
9/06	28 / 29	180	MSO	C-4	750	Sunny	5 - 15	85	Р	
13.37h										
9/06	29 / 30	22.5	MSO	C-4	750	Sunny	5 - 15	85	Р	
12.54h	ļ								· · · · · · · · · · · · · · · · · · ·	
9/06	30 / 31	116	MS	C - 1	750	Sunny	5 - 15	85	Р	
13.28h	ļ. <u></u>					ļ	ļ			
9/06	. 29 / 31	268	MS	C - 1	750	Sunny	5 - 15	85	Р	
13.38h										
9/06	29 / 32	46	MS	C - 1	750	Sunny	5 - 15	85	Р	
14.05h										
9/06	31 / 32	22.5	MS	C - 1	750	Sunny	5 - 15	85	Р	
13.26h	 					ļ		ļ		
9/06	31 / 33	376	MSO	C-4	750	Sunny	5 - 15	85	Р	
14.15h	 		 			ļ	ļ	ļ		
9/06	32 / 33	40	MSO	C-4	750	Sunny	5 - 15	85	Р	
15.12h	ļ			ļ			 	ļ		
9/06	31/32	22.5	MS	C-1	750	Sunny	5 - 15	85	Р	
13.26h			<u> </u>	<u></u>	<u> </u>	Ĺ	<u> </u>	L	L	

12/00 - E.D.R.

PANEL SEAMING FORM

Page: 5 of: 8

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient		Comments
Time	Number	Length	Initials	Number	Setting	vveatilei	Willus	Temp.	P/F	Comments
9/06	33 / 34	32	MS	C - 1	750	Sunny	5 - 15	75	Р	
14.34h	00,04				700	Cumy	0 10			
9/06	33 / 35	376	MS	C - 1	750	Sunny	5 - 15	75	Р	
14,40h	30,00	0.0			, 00			,,,		
9/06	34 / 35	22.5	MS	C - 1	750	Sunny	5 - 15	85	Р	
14.25h										
9/06	34 / 37	26	MS	C - 1	750	Sunny	5 - 15	85	Р	
15.30h										
9/06	35 / 37	270	MS	C - 1	750	Sunny	5 - 15	85	Р	
15.35h										· ·
9/06	35 / 36	106	MS	C - 1	750	Sunny	5 - 15	85	Р	
16.16h	ļ			ļ						
9 / 06	36 / 37	22.5	MS	C-1	750	Sunny	5 - 15	85	Р	
16.13h										
9 / 07 08.25h	36 / 39	114	MS	C-1	750	Sunny	5 - 15	90	Р	
9 / 07	 			ļ ———						
08.10h	37 / 39	128	MS	C-1	750	Sunny	5 - 15	90	Р	
9 / 07									_	
07.52h	. 37 / 38	162	MS	C - 1	750	Sunny	5 - 15	90	Р	
9 / 07					750		- 15			
08.11h	38 / 39	22.5	MSO	C-4	750	Sunny	5 - 15	90	Р	
9 / 07	20 / 40	454		0.4	750	C	5 45	00		
08.18h	38 / 40	154	MSO	C - 4	750	Sunny	5 - 15	90	P	
9/07	20 / 40	00	1100	~ 4	750	Comme	5 45	00	П	
08.40h	39 / 40	96	MSO	C-4	750	Sunny	5 - 15	90	Р	
9 / 07	20 / 44	150	HCC	C 4	750	Cumpi	E 4E	00	Р	
08.53h	39 / 41	150	MSO	C-4	750	Sunny	5 - 15	90	"	
9 / 07	40 / 41	22.5	МС	C-1	750	Supple	5 - 15	90	Р	<u> </u>
08.50h	40 / 41	22.5	MS	U-1	/30	Sunny	3 - 15	30	F	

12/00 - E.D.R.

PANEL SEAMING FORM

Page: 6 of: 8

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Maathan	14/:	Ambient	DS Test	Comments
Time	Number	Length	Initials	Number	Setting	Weather	Winds	Temp.	P/F	Comments
9 / 07	40 / 41	22.5	MS	C - 1	750	Sunny	5 - 15	90	Р	
08.50h	40/41	22.5	IVIO	- כ	5	Sullily	5 - IS	90	r	
9 / 07	40 / 43	88	MS	C - 1	750	Cummia	5 - 15	90	Р	
09.10h	40 / 43	00	1910	7	7	Sunny	3 - 15	90	P	
9 / 07	40 / 42	152	MS	C - 1	750	Sunny	5 - 15	90	Р	
09.23h	40742	102	1913	0-1	730	Sumiy	3 - 13	30		
9 / 07	41 / 42	162	MS	C - 1	750	Sunny	5 - 15	90	Р	
09.42h	71772	102			700	Cumy	0 10			
9/07	42 / 43	22.5	· MS	C - 1	750	Sunny	5 - 15	90	Р	
09.05h	7			•	, 00				·	
9/07	43 / 44	82	MSO	C-4	750	Sunny	5 - 15	90	Р	
10.12h	10, 11				100					
9 / 07	42 / 44	308	MSO	C - 4	750	Sunny	5 - 15	90	Р	
10.22h									· · · · · ·	
9 / 07	42 / 45	22	MSO	C - 4	750	Sunny	5 - 15	90	Р	
10.50h	ļ			ļ			- 10			
9 / 07	44 / 45	22.5	MS	C - 1	750	Sunny	5 - 15	90	Р	
11.02h										
9 / 07	. 44 / 46	378	MS	C - 1	750	Sunny	5 - 15	90	Р	
10.09h										
9 / 07	45 / 46	30	MS	C - 1	750	Sunny	5 - 15	90	Р	
10.55h	 									
9 / 07	46 / 47	50	MSO	C-4	750	Sunny	5 - 15	90	Р	
13.17h										
9 / 07	46 / 48	354	MSO	C - 4	750	Sunny	5 - 15	90	Р	
13.28h	ļ					•				
9 / 07	47 / 48	22.5	MS	C - 1	750	Sunny	5 - 15	90	Р	
13.06h	ļ							·		
9 / 07	47 / 50	40	MS	C - 1	750	Sunny	5 - 15	90	Р	
13.18h	1		<u> </u>	<u> </u>	L	<u> </u>	ļ	<u> </u>		

12/00 - E.D.R.

PANEL SEAMING FORM

Page: _ 7 of: _ 8

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	Weather	Winds	Ambient	DS Test	Commonts
Time	Number	Length	Initials	Number	Setting	weather	AAIIIGS	Temp.	P/F_	Comments
9 / 07	48 / 50	218	MS	C - 1	750	Sunny	5 - 15	90	Р	
13.18h	46730	210		6.1	750	Sullity	5, 15	90		
9/07	48 / 49	136	MS	C - 1	750	Sunny	5 - 15	90	Р	
13.45h	46 / 49	130	MO	U . 1	750	Sullily	5 - 15	90	F	
9 / 07	49 / 50	22.5	MS	C - 1	750	Sunny	5 - 15	90	Р	
13.03h	43 / 30	22.5	1913	0-1	730	Sullity	3 - 13	30		
9/07	50 / 51	232	MS	C - 1	750	Sunny	5 - 15	90	P	•
14.13h	30731	232	1913	0-1	730	Sulling	3-13	90		
9 / 07	50 / 52	16	MS	C - 1	750	Sunny	5 - 15	90	Р	
14.45h	30 / 32	10	1913	0-1	750	Sullity	3-10	30		
9 / 07	49 / 52	136	MS	C - 1	750	Sunny	5 - 15	90	Р	1
14.47h	43732	130	1413	0 - 1	750	Sumy	3 - 13	30		
9 / 07	51 / 52	22.5	MS	C - 1	750	Sunny	5 - 15	90	Р	
14.08h	31732	22.0	1910	0 - 1	7.50	Julily	5-10	30		
9/07	51 / 54	22	MSO	C-4	750	Sunny	5 - 15	90	Р	
14.35h	01704				700					
9/07	51 / 53	198	MSO	C-4	750	Sunny	5 - 15	90	Р	
14.38h	0.7.00			ļ		00,,,,,				
9/07	. 52 / 53	138	MSO	C-4	750	Sunny	5 - 15	90	Р	
15.04h									· · · · · ·	
9/07	53 / 54	22.5	MSO	C-4	750	Sunny	5 - 15	90	P	
14.25h										
9/07	53 / 55	286	MS	C-1	750	Sunny	5 - 15	90	P	
15.10h	30,00	200					- 10		<u> </u>	· · · · · · · · · · · · · · · · · · ·
9/07	54 / 55	6	MS	C-1	750	Sunny	5 - 15	90	Р	,
15.08h	J 77. JJ		,,,,						·	
9/07	55 / 56	168	MSO	C-4	750	Sunny	5 - 15	90	P	
15.34h									<u> </u>	
9 / 07	55 / 57	56	MSO	C-4	750	Sunny	5 - 15	90	P	
16.00h	100,00						L <u> </u>	<u> </u>	<u>'</u>	<u> </u>

12/00 - E.D.R.

Q.C. Initials <u>F.D.R.</u>

PANEL SEAMING FORM

Page: 8 of: 8

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E.

Date /	Seam	Seam	Seamer	Machine	Temp.	111	147 - 1	Ambient	DS Test	0
Time	Number	Length	Initials	Number		Weather	Winds	Temp.	P/F	Comments
9/07	56 / 57	22.5	MSO	C - 4	750	Sunny	5 - 15	90	Р	
15.55h	30/3/	22.5	MISO	Ç - 4	750	Sullity	0 - 10	50		
9/07	56 / 58	158	MS	C - 1	750	Sunny	5 - 15	90	Р	
15.48h	30 / 30	130	1013	0,1	730	Sulling	3-13	30		
9/07	57 / 58	14	MS	C-1	750	Sunny	5 - 15	90	Р	
16.06h	37 7 30	1-7	1113	0 - 1	750	Summy	0 - 10		•	
9/07	58 / 59	126	MSO	C-4	750	Sunny	5 - 15	90	Р	
16.17h	00700	120		<u> </u>	, 50	Guilly	0 10			
9 / 07	59 / 60	80	MS	C-1	750	Sunny	5 - 15	90	Р	
16.16h					, 00	Junny	0 .0			
9/07	60 / 61	42	MSO	C-4	750	Sunny	5 - 15	90	Р	
16.35h		,-								
	1			END						
	ļ									
	-			 						
	ļ									
	-			1						
	ļ				ļ					
 	┧.									
	 				 -					
	4									
	 			 						
	1]	}		1			
-	 			 	 					
	-									
	+			 	ļ ———	 	 	ļ		
	1									
	 			 -		 	 			
	4			1	1	<u> </u>	1			
	1	L		<u> </u>	1	L	L	1	L	<u> </u>

12/00 - E.D.R.

• Non-Destructive Test Log

Р

Р

Р

Ρ

Р

American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

NON - DESTRUCTIVE TEST LOG

Page: 1 of:____

					· ·	Air Te	st Information			
_				Pres	sure		Tir	ne	Results	
	Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start Time	Finish Time	(P / F)	Locations / Comments
	9 / 05	1/2	ER	31	31	0	09.47	09.52	ρ	
	9 / 05	1/3	ER	31	31	0	09.47	09.52	Р	
	9 / 05	1/3	ER	31 (MWH, June 2004)	28	-3	09.54	09.59	P	
	9 / 05	2/3	ER	30	28	-2	09.47	09.52	Р	
	9 / 05	2/4	ER	31	30	-1	10.05	10.10	P	
	9 / 05	3/4	ER	31	29	-2	10.05	10.10	Р	
	9 / 05	3/4	ER	31	30	-1	10.29	10.34	Р	
	9 / 05	3/5	ER	31	29	-2	10.29	10.34	Р	
	9 / 05	4/6	ER	31	31	0	10.56	11.01	Р	
	9 / 05	4/6	ER	31	29	-2	10.56	11.01	P	

11.03

11.03

10.19

12.37

12.37

11.08

11.08

10.24

12.42

12.42

9 / 05 12/00 - £.D.R.

9/05

9/05

9/05

9/05

5/6

5/7

6/7

6/8

7/8

ER

ER

ER

ER

ER

31

31

31

31

31

30

29

30

28

28

-1

-2

-1

-3

-3

Project Name:

American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

NON - DESTRUCTIVE TEST LOG

Page: 2 of:

Air Test Information Pressure Time Results Finish Date Seam Tester Start Finish Start +/-(P / F) **Locations / Comments** Tested Number Initial P.S.I. P.S.I. Time **Time** 9/05 8 / 10 ER 29 -2 13.50 13,55 Ρ 31 ER ₽ 9 / 05 8/9 31 31 0 13.50 13.55 9/05 9/10 ER 31 29 -2 13.50 13.55 Ρ Ρ 9 / 05 10 / 11 ER 31 28 -3 14.15 14.20 10 / 12 0 Р 9/05 ER 31 31 14.15 14.20 9 / 12 ER 29 -2 14.22 14.27 Р 9/05 31 11 / 12 0 Р 9 / 05 ER 31 31 14.15 14.20 Р 9/05 11 / 13 ER 31 30 -1 14.30 14.35 12 / 13 ER 31 0 14.30 14.35 Ρ 9 / 05 31 9/05 12 / 14 ER 31 31 0 14.44 14.49 Ρ 13 / 14 Р 9/05 ER 31 30 14.44 14.49 -1 Ρ 9/05 13 / 15 ER 31 30 -1 14.45 14.50 9/05 14 / 15 ER 31 30 -1 15.45 15.5 Р Ρ 9/05 14 / 16 ER 31 29 -2 15.45 15.5

15.57

16.02

Р

9 / 05 12/00 - £.D.R. 15 / 16

ER

31

31

0

Project Name:

MID-AMERICA LIMING O.

NON - DESTRUCTIVE TEST LOG

Page: 3 of:____

Project Name: American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

				· · · · · · · · · · · · · · · · · · ·	Air Te	st Information			
				ssure			ne	Results	
Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start Time	Finish Time	(P / F)	Locations / Comments
9 / 05	15 / 17	ER	31	30	-1	16.10	16.15	Р	
9 / 05	15 / 17	ER	31	31	0	15.57	16.02	Р	
9 / 05	16 / 17	ER	31	30	-1	15.57	16.02	Р	
9 / 05	17 / 18	ER	31	29	-2	16.26	16.31	Р	
9 / 06	18 / 19	ER	31	30	-1	09.58	10.03	Р	
9 / 06	18 / 19	ER	31	28	-3	09.58	10.03	Р	
9 / 06	18 / 20	ER	31	28	-3	09.58	10.03	Р	
9 / 06	19 / 20	ER	31	29	-2	10.05	10.10	Р	
9/06	19 / 21	ER	31	30	-1	10.05	10.10	P	
9 / 06	20 / 21	ER	31	29	-2	10.05	10.10	Р	
9 / 06	20 / 22	ER	31	30	-1	10.12	10.17	Р	
9 / 06	22 / 23	ER	31	31	0	10.44	10.49	Р	
9 / 06	22 / 24	ER	31	29	-2	10.44	10.49	Р	
9 / 06	21 / 23	ER	31	30	-1	10.15	10.20	Р	
9/06	21 / 22	ER	31	31	0	10.12	10.17	Р	

12/00 - E.D.R.

MIO-AMERICA LINING LO.

Page: 4 of:____

Project Name: American Chemical Services Project Location: Griffin, IN Material Description: 60 Mil L.L.D.P.E.

					Air Te	st Information			
			Pres	sure		Tir	ne	Results	
Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start Time	Finish Time	(P / F)	Locations / Comments
9 / 06	23 / 24	ER	31	30	-1	10.35	10.40	Р	
9 / 06	23 / 25	ER	31	31	0	10.35	10.40	Р	
9 / 06	24 / 25	ER	31	31	0	10.35	10.40	Р	
9 / 06	24 / 26	ER	31	30	-1	12.22	12.27	Р	
9 / 06	26 / 28	ER	31	30	-1	14.08	14.13	Р	
9 / 06	25 / 27	ER	31	31	0	12.22	12.27	Р	
9 / 06	27 / 28	ER	31	31	0	14.08	14.13	Р	
9 / 06	28 / 29	ER	31	30	-1	14.08	14.13	Р	
9 / 06	27 / 29	ER	31	29	-2	14.25	14.30	P	
9 / 06	27 / 29	ER	31	28	-3	14.18	14.23	P	
9 / 06	27 / 30	ER	31	31	0	14.18	14.23	Р	
9 / 06	29 / 30	ER	31	30	-1	14.18	14.23	Р	
9 / 06	30 / 31	ER	31	28	-3	14.25	14.30	Р	
9 / 06	29 / 31	ER	31	28	-3	14.25	14.30	Р	
9 / 06	29 / 32	ER	31	30	-1	14.36	14.41	Р	

12/00 - E.D.R.

Q.C. II	nitials:	$\mathcal{F}.\mathcal{D}.\mathcal{R}.$
---------	----------	--

NON - DESTRUCTIVE TEST LOG

Page: 5 of: 8

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

					Air Te	st Informatio	<u> </u>]
				ssure			ne	Results	
Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+1-	Start Time	Finish Time	(P / F)	Locations / Comments
9 / 06	31 / 32	ER	31	30	-1	14.36	14.41	Р	
9 / 06	31 / 33	ER	31	31	0	16.14	16.19	Р	
9 / 06	32 / 33	ER	31	31	0	16.14	16.19	Р	
9 / 06	33 / 34	ER	31	31	0	16.22	16.27	P	
9 / 06	33 / 35	ER	31	31	0	16.22	16.27	Р	
9 / 06	34 / 35	ER	31	31	0	16.22	16.27	Р	
9 / 06	34 / 37	ER	31	31	0	16.30	16.35	Р	
9 / 06	35 / 37	ER	31	31	0	16.30	16.35	Р	
9 / 06	35 / 36	ER	31	30	-1	16.41	16.46	Р	
9 / 06	36 / 37	ER	31	29	-2	16.41	16.46	Р	
9 / 07	36 / 39	ER	31	29	-2	09.31	09.36	Р	
9 / 07	37 / 39	ER	31	30	-1	09.31	09.36	Р	
9 / 07	37 / 38	ER	31	29	-2	09.31	09.36	Р	
9 / 07	38 / 39	ER	31	31	0	09.38	09.43	Р	
9 / 07	40 / 41	ER	31	30	-1	09.45	09.50	Р	

12/00 - F.D.R.

NON - DESTRUCTIVE TEST LOG

Project Name: American Chemical Services Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

					Air Te	st Information			
				sure			ne	Results	
Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start Time	Finish Time	(P / F)	Locations / Comments
9/07	39 / 41	ER	31	30	-1	09.45	09.50	Р	
9/07	39 / 40	ER	31	31	0	09.45	09.50	Р	
9 / 07	38 / 40	ER	31	31	0	09.38	09.43	Р	
9 / 07	38 / 40	ER	31	31	0	09.38	09.43	Р	
9 / 07	40 / 43	ER	31	29	-2	09.55	10.00	Р	
9 / 07	40 / 42	ER	31	31	0	09.55	10.00	Р	
9 / 07	41 / 42	ER	31	31	0	10.36	10.41	Р	
9 / 07	42 / 43	ER	31	30	-1	09.55	10.00	Р	
9 / 07	43 / 44	ER	31	31	0	10.47	10.52	P	
9 / 07	42 / 44	ER	31	31	0	10.47	10.52	Р	
9 / 07	42 / 44	ER	31	30	-1	12.25	12.30	Р	
9 / 07	42 / 45	ER	31	30	-1	12.32	12.37	Р	
9 / 07	44 / 45	ER	31	31	0	12.32	12.37	Р	
9 / 07	44 / 46	ER	31	30	-1	12.25	12.30	Р	
9 / 07	44 / 46	ER	31	30	-1	12.25	12.30	Р	

12/00 - E.D.R.

Q.C. Initials: £.D.R.

Page: 6 of: 8

Page: 7 of: 8

Project Name: American Chemical Services

Project Location: Griffith, IN

Material Description:

60 Mil L.L.D.P.E.

		į			Air Te	st Information	1]
				ssure			me	Results	
Date Tested	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start Time	Finish Time	(P / F)	Locations / Comments
9 / 07	45 / 46	ER	31	31	0	12.32	12.37	Р	
9 / 07	46 / 47	ER	31	30	-1	14.30	14.35	Р	
9 / 07	46 / 48	ER	31	31	0	14.30	14.35	Р	
9 / 07	46 / 48	ER	31	30	-1	14.30	14.35	Р	
9 / 07	47 / 48	ER	31	30	-1	14.38	14.43	Р	
9 / 07	47 / 50	ER	31	31	0	14.38	14.43	P	
9 / 07	48 / 50	ER	31	30	-1	14.38	14.43	Р	
9 / 07	48 / 49	ER	31	31	0	14.45	14.50	Р	
9 / 07	49 / 50	ER	31	31	0	14.45	14.50	Р	
9 / 07	50 / 51	ER	31	31	0	14.44	14.49	Р	
9 / 07	50 / 52	ER	31	31	0	14.44	14.49	Р	
9 / 07	49 / 52	ER	31	31	0	15.05	15.10	Р	
9 / 07	51 / 52	ER	31	31	0	14.44	14.49	Р	
9 / 07	52 / 53	ER	31	30	-1	15.22	15.27	Р	
9 / 07	51 / 53	ER	31	30	-1	15.12	15.17	Р	

12/00 - E.D.R.

Q.C. Initials: $\mathcal{I}.\mathcal{D}.\mathcal{R}.$

NON - DESTRUCTIVE TEST LOG

Page: 8 of: 8

Project Name:_	American Chemical Services	Project Location:	Griffith, IN	Material Description:	60 Mil L.L.D.P.E.

					Air Te	st Information	1]
				sure			ne	Results	
Date <u>Tested</u>	Seam Number	Tester Initial	Start P.S.I.	Finish P.S.I.	+/-	Start <u>Time</u>	Finish Time	(P / F)	Locations / Comments
9 / 07	51 / 54	ER	31	30	-1	15.12	15.17	P	
9 / 07	53 / 54	ER	31	30	-1	15.12	15.17	P	
9 / 07	53 / 55	ER	31	31	0	16.05	16.10	P	
9 / 07	54 / 55	ER	31	30	-1	16.05	16.10	P	
9 / 07	55 / 57	ER	31	31	0	16.18	1.23	Р	
9 / 07	55 / 56	ER	31	31	0	16.18	1.23	Р	
9 / 07	56 / 57	ER	31	31	0	16.18	1.23	Р	
9 / 07	57 / 58	ER	31	31	0	16.23	16.28	Р	
9 / 07	56 / 58	ER	31	30	-1	16.23	16.28	Р	
9 / 07	58 / 59	ER	31	31	0	16.50	16.55	Р	
9 / 07	59 / 60	ER	31	30	-1	16.50	16.55	Р	
9 / 07	60 / 61	ER	31	31	0	16.50	16.55	Р	
					END				

12/00 - E.D.R.

Q.C. Initials:	\mathcal{EDR}
Q. C. II lidelis.	L, D, K

• Field Destructive Test Log

MID-AMERICA LINING FOL

FIELD DESTRUCTIVE TEST LOG

Page: 1 **of:** 3

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

Date	DS	Seam	Mach.	Seamer	Pe	el Value	S -	She	ar Value	s -	Field	Lab
Date	Number	Number	Number	Initials		bs./Inche	s	LI	os./Inche	s	Pass	Pass
9 / 05	1	1/3	C - 1	MS	97/102 102/113	97/102 97/105	98/101	125 122	128 127	130	Р	Р
9 / 05	2	3/4	C - 4	MSO	109/120 95/114	104/150 103/105	107/121	121 124	124 127	122	Р	P
9 / 05	3	4/6	C - 1	MS	99/110 101/122	95/118 97/109	105/108	126 117	127 123	127	Р	P
9 / 05	4	8/9	C - 1	MS	97/100 98/102	104/104 100/101	98/103	118 124	122 125	124	Р	P
9 / 05	5	10 / 11	C-4	MSO	101/105 94/97	102/103 101/107	98/106	118 119	122 123	121	Р	Р
9 / 05	6	12 / 13	C-1	MS	103/104 97/100	103/111 101/107	101/105	111 119	118 120	115	Р	Р
9 / 05	7	14 / 16	C-4	MSO	91/99 93/103	105/106 96/100	95/102	112 114	114 121	114	Р	Р
9 / 05	8	15 / 17	C - 1	MS	96/97 96/100	96/100 93/95	94/98	106 114	108 115	113	Р	P
9 / 06	9	18 / 20	C-1	MS	105/108 104/114	• ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		115 131	129 132	128	Р	Р
9 / 06	10	20 / 22	C - 4	MSO	102/110 106/120	105/106 97/108	105/110	127 129	129 129	132	Р	Р
9 / 06	11	22 / 24	C - 1	MS	101/109 93/109	94/112 102/109		124 126	124 126	125	P	P
9 / 06	12	24 / 26	C - 4	MSO	98/109 113/115	101/108 105/112		119 122	123 123	122	P	P
9 / 06	13	25 / 27	C - 1	MS	108/110 106/107		106/106	120 116	124 117	123	P	Р
9 / 06	14	28 / 29	C - 4	MSO	95/106 101/101	98/99 96/100	98/98	99 118	99 119	110	Р	Р
9 / 06	15	31 / 33	C - 4	MSO	111/121 97/102	93/101 91/110	91/98	111 117	114 104_	93	Р	Р

12/00 - £.D.R.

ATHOR MED BY THE LIMITED SECTION

FIELD DESTRUCTIVE TEST LOG

Page: 2 of: 3

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

Date	DS	Seam	Mach.	Seamer	P	el Value	8 -	She	ar Value)S -	Field	L.ab
Date	Number	Number	Number	initials	L	bs./inche	8	LI	os./Inche	8	Pass	Pass
9 / 06	16	33 / 35	C - 1	MS	99/111 109/111	98/109 108/110	93/96	124 118	124 123	130	P	P
9 / 06	17	36 / 37	C - 1	MS	104/121 104/106	106/115 105/111	129/129	120 112	129 114	112	Р	Р
9 / 06	18	R 29 / P10	MX - 0	AG	85 93	87 96	91	112 116	112 117	115	Р	Р
9 / 07	19	37 / 38	C - 1	MS	82/85 78/82	79/80 80/83	79/81	90 93	91 94	92	Р	Р
9 / 07	20	39 / 41	C-4	MSO	88/90 81/89	84/88 87/89	86/90	95 96	101 97	98	Р	Р
9 / 07	21	43 / 44	C-4	MSO	92/94 83/92	89/93 93/95	90/92	96 99	98 101	98	Р	Р
9 / 07	22	44 / 46	C - 1	MS	87/87 85/89	82/88 87/92	84/88	99 91	100 98	101	Р	Р
9 / 07	23	46 / 48	C - 4	MSO	87/90 81/85	88/92 83/87	84/87	88 94	90 95	93	Р	P
9 / 07	24	48 / 50	C - 1	MS	87/88 85/87	85/88 80/81	82/96	91 92	92 96	95	Р	P
9 / 07	25	52 / 53	C-4	MSO	88/92 91/95	89/92 92/94	89/90	102 104	103 105	103	Р	P
9 / 07	26	53 / 55	C - 1	MS	87/94 87/92	84/89 89/90	89/91	98 101	99 106	100	Р	Р
9 / 07	27	56 / 58	C - 1	MS	85/89 90/92	87/88 89/91	89/91	96 99	97 100	98	Р	Р
9 / 07	28	58 / 59	C-4	MSO	82/85 86/88	87/88 81/85	83/85	95 98	96 100	97	Р	P
9 / 07	29	R 50 / P24	MX - 0	AG	77 82	81 38	84	90 93	91 94	92	P 4	2.F
9 / 09	30	R 136 / P 35	MX - 0	AG	84 85	86 89	87	90 93	91 94	92	Р	P

497(

12/00 - E.D.R.

Q.C. Initials: <u>£.D.R.</u>

FIELD DESTRUCTIVE TEST LOG

Page: 3 of: 3

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

Date	DS Number	Seam Number	Mach. Number	Seamer Initials		el Value bs./Inche			ear Value os,/inche		Field Pass	Lab Pass
9 / 09	29A	R 50 / P 24	MX - 0	AG	78 75	72 84	85	97 83	98 88	89	Р	Р
9 / 09	29B	R 50 / P 24	MX - 0	AG	73 73	75 79	77	75 88	85 89	88	Р	Р
									••••••			
···												
							.,,					
							.,					
							,,					
			<u> </u>									
							.,					
						,						

12/00 - £.D.R.

Q.C. Initials: <u>F.D.R.</u>

• Laboratory Destructive Test Results

September 9, 2002

Mail To:

Mr. Steve Palmer

E.C.I.

5290 Nimitz Rd.

Loves Park, IL 61111

fax: 219-924-4561

Dear Mr. Palmer:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:

2176-14-04

Date Received:

09-09-02

Material(s) Tested:

8 LLDPE heat fusion weld seams

Test(s) Requested:

Peel & Shear Strength (ASTM D 6392)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Melissa Hunter Project Manager

Geosynthetic Services Division

SEAMS RESULTS ATTACHED

SEAM TEST REPORT LEGEND

Seam Fallure Modes (as per NSF 54, Appendix A)

FTB:

Film Tearing Bond

BLF:

Brittle Liner Failure

NON FTB:

Non Film Tearing Bond

Locus/Break Codes: Dielectric/Solvent Welds

CL:

Break in sheeting at clamp edge.

BRK: SE:

Break in sheeting. Break at seam edge.

AD-BRK:

Break in sheeting after some adhesion failure between sheets.

AD: Fallure in adhesion between sheets.

SIP:

Separation in plane.

Locus/Break Codes: Fillet Weld Seams

AD1:

Fallure in adhesion, Specimens delaminate under bead and break

through the extruded material in outer region.

AD2:

Failure in adhesion.

AD-WL:

Break through fillet weld.

SE:

Break at seam edge.

AD-BRK:

Break in bottom sheeting after some adhesion failure between

the fillet and the bottom sheet (applicable to peel only).

HT:

Break at the edge of the hot tack for specimens which could not

be delaminated in the hot tack.

Locus/Break Codes: Fabric Reinforced Liner

AD:

Adhesion failure resulting in delamination in the plane of the

bond.

Delamination in the plane of the scrim (peel only).

DEL: AD-DEL:

Delamination in the plane of the scrim after some delamination

in the plane of the bond (peel only).

Break in sheet through both the fabric and the piles of the

P:

Fabric putlout. Pullout of threads parallel to the direction of test

followed by break in polymeric sheeting.

SIP:

BRK:

Separation in plane.

CLIENT: E.C.I.

CONTACT: MR. STEVE PALMER

PROJECT: AMERICAN CHEMICAL SERVICES

MATERIAL: LLDPE

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-14-04

ASTM D 6392/4437

ANALYST: MPP

	[PEEL EVALUATION	N			SHEAR EVALUATION ELONG. NSF 54 @ BREAK (%) FAILURE MODE > 50 FTB > 50 FTB		
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
	1A	107	<10	SE	FTB	NR	126	> 50	FTB	NR
	2A	106	<10	SE	FTB		1			
	3A	107	<10	SE	FTB		129	> 50	FTB	
	4A	105	<10	SE	FTB					
	5A	106	<10	SE	FTB		132	> 50	FTB	
DS-1	MEAN:	106]	1			i
	1B	109	<10	SE	FTB		119	> 50	FTB	
	2B	112	<10	SE	FTB		1			
	3B	95	<10	SE	FTB		129	> 50	FTB	
	4B	121	<10	SE	FTB	ļ			j	,
	5B	106	<10	SE	FTB					L
	MEAN:	109			•	MEAN:	127		•	
	1A	129	<10	SE	FTB	NR	132	> 50	FTB	NR
	2A	120	<10	SE	FTB		1 1			
	3A	124	<10	SE	FTB		131	> 50	FTB	
	4A	124	<10	SE	FTB	1	1		i	
	5A	123	<10	SE	FTB	j	131	> 50	FTB	
DS-2	MEAN:	124								f
	1B	129	<10	SE	FTB		127	> 50	FTB	
	2B	125	<10	SE	FTB	1	1			
	3B	126	<10	SE	FTB		127	> 50	FTB	1
	4B	127	<10	SE	FTB				1	
	5B	127	<10	SE	FTB			· .	<u> </u>	
	MEAN:	127				MEAN:	130			

NR: Not Requested

CLIENT: E.C.I.

CONTACT: MR. STEVE PALMER

PROJECT: AMERICAN CHEMICAL SERVICES

MATERIAL: LLDPE

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-14-04

ASTM D 6392/4437

ANALYST: MPP

	1	T	PEEL EVALUATION				SHEAR EVALUATION				
1		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)	
	1A	113	<10	SE	FTB	NR	132	> 50	FTB	NR	
	2A	110	<10	SE	FTB	İ	1				
	3A	117	<10	SE	FTB		124	> 50	FTB		
]	4A	114	<10	SE	FTB					Ī	
	5A	113	<10	SE	FTB	_]	131	> 50	FTB		
DS-3	MEAN:	113					l			ļ	
	1B	107	<10	SE	FTB		131	> 50	FTB		
	2B	107	<10	SE	FTB	1	1				
	3B	107	<10	SE SE	FTB	1	131	> 50	FTB		
	4B	103	<10	SE	FTB					ł	
	5B	103	<10	SE	FTB		<u> </u>		<u> </u>	<u> </u>	
	MEAN:	105	<u></u>			MEAN:	130				
	1A	105	<10	SE	FTB	NR	139	> 50	FTB	NR	
	2A	100	<10	SE	FTB				1		
)	3A	106	<10	SE	FTB]	136	> 50	FTB		
	4A	106	<10	SE	FTB		1		İ		
	5A	102	<10	SE	FTB	_	112	> 50	FTB		
DS-4	MEAN:	104	ļ <u>.</u>		-	_	ļ '			}	
	1B	104	<10	SE	FTB		135	> 50	FTB		
	2B	100	<10	SE	FTB				1		
	3B	108	<10	SE	FTB		134	> 50	FTB		
	4B	107	<10	SE	FTB]	•	1	1	
	5B	108	<10	SE	FTB	1			<u></u>	<u> </u>	
	MEAN:	105				MEAN:	131				

NR: Not Requested

CLIENT: E.C.I.

CONTACT: MR. STEVE PALMER

PROJECT: AMERICAN CHEMICAL SERVICES

MATERIAL: LLDPE

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-14-04

ASTM D 6392/4437

ANALYST: MPP

			PEEL EVALUATION					SHEAR EVALUATION			
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)	
 -	1A	107	<10	SE	FTB	NR	134	> 50	FTB	NR	
	2A	107	<10	SE	FTB	1					
	3A	109	<10	SE	FTB		131	> 50	FTB		
	4A	107	<10	SE	FTB		{				
	5A	108	<10	SE	FTB		130	> 50	FTB		
DS-5	MEAN:	108]	i				
	1B	112	<10	SE	FTB		122	> 50	FTB		
	2B	112	<10	SE	FTB				ļ		
	3B	113	<10	SE	FTB	1	119	> 50	FTB		
	4B	115	<10	SE	FTB		}		İ		
	5B	107	<10	SE	FTB		<u> </u>		<u> </u>		
	MEAN:	112				MEAN:	127				
	1A	111	<10	SE	FTB	NR	129	> 50	FTB	NR	
	2A	109	<10	SE	FTB		1				
	3A	112	<10	SE	FTB		107	> 50	FTB		
	4A	115	<10	SE	FTB	1	1 1				
	5A	124	<10	SE	FTB	_	130	> 50	FTB		
DS-6	MEAN:	114				_	}				
	1B	109	<10	SE	FTB		114	> 50	FTB		
	2B	103	<10	SE	FTB	1			1		
	3B	116	<10	SE	FTB		129	> 50	FTB		
	4B	110	<10	SE	FTB						
	5B	109	<10	SE	FTB	<u> </u>	1				
	MEAN:	109				MEAN:	122				

NR: Not Requested

CLIENT: E.C.I.

CONTACT: MR. STEVE PALMER

PROJECT: AMERICAN CHEMICAL SERVICES

MATERIAL: LLDPE

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-14-04

ASTM D 6392/4437

ANALYST: MPP

PEEL EVALUATION SHEAR EVALUATION PEEL **NSF 54** PROJ. MAXIMUM MAXIMUM LOCUS FLONG NSF 54 **PROJECT** SPECIMEN **TENSION** INCURSION OF **FAILURE** SPEC. **TENSION** @ BREAK **FAILURE** SPEC. SAMPLE **FAILURE** MODE MODE NUMBER NUMBER (lb/in) (lb/in) (lb/in) (%) (lb/in) (%) 1A 105 <10 SE FTB NR 129 > 50 FTB NR SE 2A 104 <10 FTB <10 SE **FTB** 3A 127 > 50 110 FTR 4A <10 SE **FTB** 115 5A 120 <10 SE **FTB** 129 > 50 FTB **DS-7** MEAN: 111 SE 1B 104 <10 FTB 101 > 50 FTB 2B <10 SE FTB 104 SE 3B 105 <10 FTB 128 > 50 **FTB** SE **4B** 106 <10 FTB SE 5B 106 <10 FTB 105 MEAN: 122 MEAN: 107 SE FTB NR 1A <10 131 > 50 FTB NR SE 2A 112 <10 FTB SE **3A** 108 <10 FTB 128 > 50 FTB 4A 107 <10 SE FTB 5A <10 SE **FTB** 131 108 > 50 **FTB** DS-8 MEAN: 108 1B 115 <10 SE FTB 131 > 50 FTB 2B 109 <10 SE FTB SE 3B 114 <10 **FTB** 131 > 50 FTB SE **4B** 112 <10 FTB SE 5B 107 <10 FTB MEAN: MEAN: 111 130

NR: Not Requested

September 10, 2002

Mail To:

Mr. Steve Palmer

E.C.I.

5290 Nimitz Rd.

Loves Park, IL 61111

fax: 219-924-4561

Dear Mr. Palmer:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:

2176-16-07

Date Received:

09-10-02

Material(s) Tested:

19 LLDPE heat fusion weld seams

2 LLDPE single track extrusion weld seams

Test(s) Requested: -

Peel & Shear Strength (ASTM D 6392)

If you have any questions or require any additional information, please call us at 1-800-880-8378

Sincerely,

Melissa Huter (sRt for)

Melissa Hunter **Project Manager** Geosynthetic Services Division

SEAMS RESULTS ATTACHED

SEAM TEST REPORT LEGEND

Seam Fallure Modes (as per NSF 54, Appendix A)

FTB:

Film Tearing Bond

BLF:

Brittle Liner Failure

NON FTB:

Non Film Tearing Bond

Locus/Break Codes: Dielectric/Solvent Welds

CL:

Break in sheeting at damp edge.

BRK:

Break in sheeting. Break at seam edge.

SE: AD-BRK:

Break in sheeting after some adhesion failure between sheets.

AD:

Failure in adhesion between sheets.

SIP:

Separation in plane.

Locus/Break Codes: Fillet Weld Seams

AD1:

Fallure in adhesion, Specimens delaminate under bead and break

through the extruded material in outer region.

AD2: Fellure in adhesion,

AD-WL:

Break through fillet weld. Break at seam edge.

SE: AD-BRK:

Break in bottom sheeting after some adhesion failure between

the fillet and the bottom sheet (applicable to peel only).

HT:

Break at the edge of the hot tack for specimens which could not

be delaminated in the hot tack.

Locus/Break Codes: Fabric Reinforced Liner

AD: DEL

BRK:

FP:

Adhesion failure resulting in delamination in the plane of the

Determination in the plane of the scrim (peel only).

AD-DEL:

Delamination in the plane of the scrim after some delamination

in the plane of the bond (peel only).

polymer.

Break in sheet through both the fabric and the piles of the

Fabric pullout. Pullout of threads parallel to the direction of test

followed by break in polymeric sheeting.

SIP: Separation in plane.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER
PROJECT: AMERICAN CHEMICAL SERVICES

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-16-07

ANALYST: MPP

	T	PEEL EVALUATION					SHEAR EVALUATION				
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	_ (%)	MODE	(lb/in)	
	1A	112	<10	SE	FTB	NR	133	> 50	FTB	NR	
	2A	118	<10	SE	FTB					ł	
	3A	111	<10	SE	FTB	ł	120	> 50	FTB		
	4A	111	<10	SE	FTB	Ì	1				
	5A	113	<10	SE	FTB		133	> 50	FTB		
DS-9	MEAN:	113]	1				
	1B	101	<10	SE	FTB		132	> 50	FTB		
	2B	103	<10	SE	FTB					Ì	
	3B	103	<10	SE	FTB		129	> 50	FTB		
	4B	104	<10	SE	FTB		1		İ	ļ	
	5B	102	<10	SE.	FTB						
	MEAN:	103				MEAN:	129				
	1A	120	<10	SE	FTB	NR	135	> 50	FTB	NR	
	2A	119	<10	SE	FTB	}	1		1	l	
	3A	124	<10	SE	FTB		133	> 50	FTB	l	
	4A	110	<10	SE	FTB				ļ		
DS-10	5A	74	<10	SE	FTB		133	> 50	FTB		
	MEAN: 109]			1		
	1B	104	<10	SE	FTB		132	> 50	FTB		
	2B	101	<10	SE	FTB					1	
	3B	106	<10	SE	FTB	}	133	> 50	FTB		
	4B	111	<10	SE	FTB						
	5B	118	<10	SE	FTB				<u> </u>		
	MEAN:	108				MEAN:	133				

NR: Not Requested

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437 ANALYST: MPP

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

PEEL EVALUATION SHEAR EVALUATION PFFL LOCUS PROJ. MAXIMUM NSF 54 MAXIMUM ELONG. NSF 54 PROJECT SAMPLE **SPECIMEN TENSION** INCURSION OF **TENSION** @ BREAK SPEC. **FAILURE** SPEC. **FAILURE** NUMBER NUMBER (lb/in) (%) FAILURE MODE (lb/in) (lb/in) (%) MODE (lb/in) 1A 116 <10 SE FTB NR 129 > 50 FTB NR SE 2A 121 <10 FTB SE **3A** 124 <10 FTB 127 > 50 FTB **4A** 118 <10 SE FTB 5A <10 SE FTB FTB 119 129 > 50 **DS-11** MEAN: 120 SE 1B 108 <10 FTB 131 > 50 FTB 2B SE FTB 119 <10 SE **3B** 110 <10 **FTB** 129 > 50 FTB **4B** 111 <10 SE **FTB** SE 5B 110 <10 FTB MEAN: 112 MEAN: 129 125 SE NR 135 > 50 FTB NR 1A <10 FTB SE FTB 2A 126 <10 **3A** 122 <10 SE FTB 136 > 50 FTB 4A 122 SE **FTB** <10 SE 5A 120 <10 **FTB** 121 > 50 FTB DS-12 MEAN: 123 1B 130 <10 SE FTB > 50 FTB 132 SE 2B 128 <10 **FTB** SE **3B** 124 <10 FTB 131 > 50 FTB **4B** SE 123 <10 FTB SE 5B <10 FTB 113 MEAN: 124 MEAN: 131

NR: Not Requested

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

ANALYST: MPP

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

PEEL EVALUATION SHEAR EVALUATION MAXIMUM PEEL LOCUS **NSF 54** PROJ. **MAXIMUM** ELONG. **PROJECT NSF 54** SPECIMEN SAMPLE **TENSION** INCURSION OF **FAILURE** SPEC. **TENSION** @ BREAK FAILURE SPEC. NUMBER **FAILURE** MODE NUMBER (lb/in) (%) (lb/in) (lb/in) (%) MODE (lb/in) 1A 109 <10 SE FTB NR 135 > 50 FTB NR SE FTB 2A 102 <10 SE **3A** 116 <10 FTB 130 > 50 FTB **4**A 110 <10 SE FTB 5A SE 105 <10 **FTB** 133 > 50 FTB **DS-13** MEAN: 108 <10 SE FTB > 50 **FTB** 1B 117 128 SE FTB 2B 112 <10 SE 3B 112 <10 FTB 125 > 50 FTB SE **4B** 113 <10 **FTB** 5B 113 <10 SE **FTB** MEAN: MEAN: 130 113 SE 1A 107 <10 FTB NR 137 > 50 FTB NR SE 2A 112 <10 FTB SE FTB ЗА FTB 138 > 50 107 <10 4A 107 SE **FTB** <10 5A SE **FTB** > 50 100 <10 138 FTB **DS-14** MEAN: 107 SE 1B 112 <10 FTB 135 > 50 FTB SE **2B** FTB 113 <10 **3B** SE FTB 112 <10 136 > 50 FTB **4B** SE 112 <10 FTB 5B 114 <10 SE **FTB** MEAN: MEAN: 113 137

NR: Not Requested

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437 ANALYST: MPP

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

				PEEL EVALUATION	1		1	SHEAR EV	LUATION	
	}	MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
	1A	116	<10	SE	FTB	NR	139	> 50	FTB	NR
	2A	104	<10	SE	FTB	1	1			\
	3A	105	<10	SE	FTB		138	> 50	FTB	
	4A	107	<10	SE	FTB				ļ	ļ
	5A	104	<10	SE	FTB		139	> 50	FTB	
D8-15	MEAN:	107								
	1B	113	<10	SE	FTB	7	139	> 50	FTB	1
	2B	110	<10	SE	FTB					1
	3B	111	<10	SE	FTB	1	139	> 50	FTB	
	4B	112	<10	SE	FTB	1	1			1
	5B	106	<10	_SE	FTB	1.	1 _1		·	1
<u> </u>	MEAN:	110				MEAN:	139			
	1A	107	<10	SE	FTB	NR	142	> 50	FTB	NR
	2A	112	<10	SE	FTB	1	1		ì	1
	3A	109	<10	SE	FTB		137	> 50	FTB	
	4A	103	<10	SE	FTB					
	5A	107	<10	SE	FTB		140	. > 50	FTB	ļ
DS-16	MEAN:	108					1		1	
	1B	107	<10	SE	FTB		138	> 50	FTB	
	2B	109	<10	SE	FTB		}		1	1
	3B	129	<10	SE	FTB	1	139	> 50	FTB	1
	4B	106	<10	SE	FTB	1			1	
	5B	108	<10	SE	FTB		<u> </u>		1	
	MEAN:	112				MEAN:	139			

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER
PROJECT: AMERICAN CHEMICAL SERVICES

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-16-07

ANALYST: MPP

				PEEL EVALUATION	1			SHEAR EV	ALUATION	
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
· · · · · · · · · · · · · · · · · · ·	1A	119	<10	SE	FTB	NR	142	> 50	FTB	NR
	2A	111	<10	SE	FTB	1	1		1	}
	3A	121	<10	SE	FTB		143	> 50	FTB	}
	4A	119	<10	SE	FTB		·		ĺ	
	5A	118	<10	SE	FTB		144	> 50	FTB	-
DS-17	MEAN:	118							ļ.	1
	1B	117	<10	SE	FTB	1	144	> 50	FTB	
	2B	122	<10	SE	FTB					
	3B	115	<10	SE	FTB		146	> 50	FTB	Į.
	4B	123	<10	SE	FTB		1			İ
	5B	121	<10	SE	FTB					
	MEAN:	120				MEAN:	144			

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the materical. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER

SEAM TYPE: SINGLE TRACK EXTRUSION WELD SEA

ANALYST: MPP

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

				PEEL EVALUATION	vi -			SHEAR EV	ALUATION	
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
	1	101	<10	SE	FTB	NR	140	> 50	FTB	NR
	2	115	<10	SE	FTB	}				
	3	118	<10	SE	FTB		149	> 50	FTB	
	4	104	<10	SE	FTB	}	1			
	5	100	<10	SE	FTB		144	> 50	FTB	
D\$-18	MEAN:	108		· · · ·		1	1 1			
		T				1	143	> 50	FTB	
							141	> 50	FTB	
						[
		. L			<u> </u>	MEAN:	143		<u> </u>	L

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437 ANALYST: MPP

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

PROJECT: AMERICAN CHEMICAL SERVICES TRI LOG #: E2176-16-07

		L		PEEL EVALUATION	N		SHEAR EVALUATION				
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(Ip\in)	(lb/in)	(%)	MODE	(lb/in)	
	1A	111	<10	SE	FTB	NR	139	> 50	FTB	NR	
	2A	111	<10	SE	FTB		1				
	3A	111	<10	SE	FTB		139	> 50	FTB		
	4A	111	<10	SE	FTB				1		
	5A	112	<10	SE	FTB	j	143	> 50	FTB		
DS-19	MEAN:	111]	1 !			į	
	1B	105	<10	SE	FTB	1	142	> 50	FTB	ļ	
	2B	105	<10	SE	FTB	ł	1				
	3B	99	<10	SE	FTB		143	> 50	FTB	1	
	4B	105	<10	SE	FTB	İ	1			ŀ	
	5B	105	<10	SE	FTB				1	<u> </u>	
	MEAN:	104				MEAN:	141				
	1A	107	<10	SE	FTB	NR	134	> 50	FTB	NR	
	2A	117	<10	SE	FTB		1		i		
	3A	119	<10	SE	FTB	1	136	> 50	FTB	}	
	4A	113	<10	SE	FTB	ļ					
	5A	115	<10	SE	FTB	_	135	> 50	FTB	1	
DS-20	MEAN:	114									
	1B	111	<10	SE	FTB		135	> 50	FTB		
	2B	106	<10	SE	FTB		1				
	3B	106	<10	SE	FTB	1	134	> 50	FTB	1	
	4B	106	<10	SE	FTB	1	1		1	1	
	5B_	105	<10	SE	FTB	<u> </u>			.1		
	MEAN:	107			_	MEAN:	135				

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437 **ANALYST: MPP**

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

	[Ţ		PEEL EVALUATION	J		SHEAR EVALUATION				
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)	
	1A	120	<10	SE	FTB	NR	133	> 50	FTB	NR	
	2A	115	<10	SE	FTB		1				
	3A	115	<10	SE	FTB		136	> 50	FTB		
	4A	115	<10	SE	FTB	1				1	
	5A	117	<10	SE	FTB		135	> 50	FTB		
DS-21	MEAN:	116					1				
	1B	116	<10	SE	FTB		139	> 50	FTB		
	2B	112	<10	SE	FTB		1				
	3B	114	<10	SE	FTB		133	> 50	FTB		
	4B	116	<10	SE	FTB		1				
	5B	111	<10	SE	FTB						
	MEAN:	114				MEAN:	135				
	1A	106	<10	SE	FTB	NR	140	> 50	FTB	NR	
	2A	105	<10	SE	FTB	į			ļ	j .	
	3A	102	<10	SE	FTB	ł	140	> 50	FTB	1	
	4A	113	<10	SE	FTB		1				
	5A	109	<10	SE	FTB		139	> 50	FTB	1	
DS-22	MEAN:	107							Ì	1	
	1B	100	<10	SĒ	FTB	1	139	> 50	FTB		
	2B	107	<10	SE	FTB				1		
	3B	108	<10	SE	FTB		139	> 50	FTB		
	4B	106	<10	SE	FTB						
	5B	105	<10	SE	FTB	<u> </u>			<u> </u>		
	MEAN:	105				MEAN:	139				

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER

SEAM TYPE: HEAT FUSION WELD

ANALYST: MPP

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

	<u> </u>			PEEL EVALUATION	٧ -		SHEAR EVALUATION				
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT	
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.	
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)	
	1A	112	<10	SE	FTB	NR	120	> 50	FTB	NR	
	2A	115	<10	SE	FTB	l					
	3A	114	<10	SE	FTB	1	122	> 50	FTB		
	4A	105	<10	SE	FTB				1		
	5A	118	<10	SE	FTB	1	121	> 50	FTB		
DS-23	MEAN:	113				1	1		Ì]	
	1B	105	<10	SE	FTB	1	124	> 50	FTB		
	2B	115	<10	SE	FTB				-		
	3B	122	<10	SE	FTB		124	> 50	FTB		
	48	119	<10	SE	FTB		}		1		
	5B	105	<10	SE	FTB	<u> </u>	1		<u> </u>	<u> </u>	
	MEAN:	113				MEAN:	122				
	1Ā	110	<10	SE	FTB	NR	125	> 50	FTB	NR	
	2A	113	<10	SE	FTB		1			}	
	3A	109	<10	SE	FTB		129	> 50	FTB		
	4A	110	<10	SE	FTB		1			1	
	5A	111	<10	SE	FTB	J	127	> 50	FTB		
DS-24	MEAN:	111]					
	1B	120	<10	SE	FTB]	129	> 50	FTB		
	2B	118	<10	SE	FTB	1					
	3B	120	<10	SE	FTB		128	> 50	FTB		
	4B	109	<10	SE	FTB	1	1				
	5B	118	<10	SE	FTB						
	MEAN:	117			·	MEAN:	128				

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

ANALYST: MPP

CONTACT: MR. STEVE PALMER PROJECT: AMERICAN CHEMICAL SERVICES **SEAM TYPE: HEAT FUSION WELD**

TRI LOG #: E2176-16-07

PEEL EVALUATION SHEAR EVALUATION MAXIMUM PEEL LOCUS NSF 54 PROJ. MAXIMUM ELONG. **NSF 54** PROJECT SAMPLE **SPECIMEN TENSION** INCURSION OF **FAILURE** SPEC. **TENSION** @ BREAK **FAILURE** SPEC. NUMBER **FAILURE** MODE MODE NUMBER (lb/in) (%) (lb/in) (lb/in) (%) (lb/in) NR 127 <10 SE FΤB NR 129 > 50 FTB 1A SE **FTB** 2A 123 <10 SE **3A** 116 <10 **FTB** 135 > 50 FTB 4A 111 <10 SE **FTB** SE 5A 122 <10 FTB 133 > 50 FTB **DS-25** 120 MEAN: SE FTB 1B 120 <10 132 > 50 FTB SE 2B FTB 114 <10 3B 116 <10 SE **FTB** 133 > 50 FTB SE **4B** 124 <10 FTB SE 5B 122 <10 **FTB** MEAN: 119 MEAN: 132 124 <10 SE FTB NR 130 FTB NR 1A > 50 SE 2A 121 <10 FTB SE **FTB 3A** <10 FTB 134 116 > 50 SE FTB 4A 118 <10 SE 5A 115 <10 FTB 132 > 50 **FTB** MEAN: 119 **DS-26** 1B 107 <10 SE FTB 131 > 50 FTB 2B 133 <10 SE **FTB** SE 3B 124 <10 FTB **FTB** 122 > 50 4B SE 111 <10 FTB 5B <10 SE FTB 111 MEAN: 117 MEAN: 130

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

CONTACT: MR. STEVE PALMER

PROJECT: AMERICAN CHEMICAL SERVICES

MATERIAL: LLDPE

SEAM TYPE: HEAT FUSION WELD

TRI LOG #: E2176-16-07

ASTM D 6392/4437

ANALYST: MPP

	Υ	1		PEEL EVALUATION	· · · · · · · · · · · · · · · · · · ·		T	SHEAR EV	ALUATION	
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
	1A	107	<10	SE	FTB	NR	129	> 50	FTB	NR
	2A	110	<10	SE	FTB		!		l	
	3A	106	<10	SE	FTB	1	128	> 50	FTB	
	4A	107	<10	SE	FTB	1				
	5A	113	<10	SE	FTB	<u> </u>	128	> 50	FTB	
DS-27	MEAN:	109							İ	
	1B	109	<10	SE	FTB	}	128	> 50	FTB	
	2B	111	<10	SE	FTB	1			ĺ	
	3B	114	<10	SE	FTB		126	> 50	FTB	
	4B	107	<10	SE	FTB	1				
	5B	106	<10	SE	FTB					i
	MEAN:	109				MEAN:	128			
	1A	104	<10	SE	FTB	NR	125	> 50	FTB	NR
	2A	107	<10	SE	FTB					
	3A	105	<10	SE	FTB	1	130	> 50	FTB	
	4A	107	<10	SE	FTB	1	1 1			
	5A	104	<10	SE	FTB		125	> 50	FTB	ļ
DS-28	MEAN:	105		,	,	1				
	1B	117	<10	SE	FTB		128	> 50	FTB	
	2B	114	<10	SE	FTB	1				
	3B	111	<10	SE	FTB	1	124	> 50	FTB	
	4B	119	<10	SE	FTB	}			1	
	5B	108	<10	SE	FTB					
	MEAN:	114			<u>.</u>	MEAN:	126			

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER

SEAM TYPE: SINGLE TRACK EXTRUSION WELD SEA

ANALYST: MPP

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

				PEEL EVALUATION	N		I	SHEAR EV	ALUATION	
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	_(lb/in)	(%)	MODE	(lb/in)
	1	99	<10	SE	FTB	NR	131	> 50	FTB	NR
	2	98	50	AD-BRK	FTB		1			
	3	100	<10	SE	FTB	1	134	> 50	FTB	
	4	104	<10	SE	FTB	ļ	1		j	
	5	100	40	AD-BRK	FTB		133	> 50	FTB	
D\$-29	MEAN:	100]			į	
							136	> 50	FTB	•
]			l	
		1					139	> 50	FTB	
						ļ			,	
					I	MEAN:	135		<u> </u>	ļ
·····	1	140	<10	SE	FTB	NR	124	> 50	FTB	NR
	2	137	<10	SE	FTB	'''	'	, 00	1	'''
	3	141	<10	SE	FTB		138	> 50	FTB	
	4	138	<10	SE	FTB	1	.00	- 55	'''	ŀ
	5	136	<10	SE	FTB		138	> 50	FTB	
DS-30	MEAN:	138			<u> </u>	1]	
		1				1	140	> 50	FTB	
				•			1		}	1
						ļ	139	> 50	FTB	ļ
					İ					
						<u> </u>				
						MEAN:	136			

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

September 11, 2002

Mail To:

Mr. Steve Palmer

E.C.I.

5290 Nimitz Rd.

Loves Park, IL 61111

fax: 219-924-4561

Dear Mr. Palmer:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:

American Chemical Services

TRI Job Reference Number:

2176-18-05

Date Received:

09-11-02

Material(s) Tested:

2 single track extrusion weld seams

Test(s) Requested:

Peel & Shear Strength (ASTM D 6392)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Project Manager

Geosynthetic Services Division

SEAMS RESULTS ATTACHED

SEAM TEST REPORT LEGEND

Seam Fallure Modes (as per NSF 54, Appendix A)

FTB: BLF: Film Tearing Bond Brittle Liner Failure

NON FTB: Non Film Tearing Bond

Locus/Break Codes: Dielectric/Solvent Welds

CL:

Break in sheeting at clamp edge.

BRK:

Break in sheeting. Break at seam edge.

SE: AD-BRK:

Break in sheeting after some adhesion failure between sheets.

AD: SIP: Failure in adhesion between sheets.

Locus/Break Codes: Fillet Weld Seams

AD1:

Failure In adhesion. Specimens delaminate under bead and break

through the extruded material in outer region.

AD2: AD-WL: Fallure in adhesion. Break through fillet weld.

Separation in plane.

SE:

Break at seam edge.

AD-BRK

Break in bottom sheeting after some adhesion failure between

the fillet and the bottom sheet (applicable to peel only).

HT:

Break at the edge of the hot tack for specimens which could not

be delaminated in the hot tack.

Locus/Break Codes: Fabric Reinforced Liner

AD:

FP.

Adhesion failure resulting in delamination in the plane of the

DO

Delamination in the plane of the scrim (peel only).

DEL: AD-DEL:

Detamination in the plane of the scrim after some detamination

in the plane of the bond (peel only).

BRK: Break in sheet through both the fabric and the piles of the

polymer.

Fabric pullout, Pullout of threads parallel to the direction of test

followed by break in polymeric sheeting.

SIP: Separation in plane.

CLIENT: E.C.I.

MATERIAL: LLDPE

ASTM D 6392/4437

CONTACT: MR. STEVE PALMER

SEAM TYPE: SINGLE TRACK EXTRUSION WELD SEA

ANALYST: MPP

PROJECT: AMERICAN CHEMICAL SERVICES

TRI LOG #: E2176-16-07

				PEEL EVALUATION	i			SHEAR EVALUATION		
		MAXIMUM	PEEL	LOCUS	NSF 54	PROJ.	MAXIMUM	ELONG.	NSF 54	PROJECT
SAMPLE	SPECIMEN	TENSION	INCURSION	OF	FAILURE	SPEC.	TENSION	@ BREAK	FAILURE	SPEC.
NUMBER	NUMBER	(lb/in)	(%)	FAILURE	MODE	(lb/in)	(lb/in)	(%)	MODE	(lb/in)
	1	122	<10	SE	FTB	NR	128	> 50	FTB	NR
	2	129	<10	SE	FTB		1 1		İ	
	3	119	<10	SE	FTB	1	126	> 50	FTB	
	4	130	<10	SE	FTB		1			
	5	127	<10	SE	FTB]	126	> 50	FTB	Ì
DS-29A	MEAN:	125								
					i		136	> 50	FTB	
		İ			Ī					
	ì						123	> 50	FTB	
					}					
		J				MEAN:	128			L
	1	127	<10	SE	FTB	NR	125	> 50	FTB	NR
	2	137	<10	SE	FTB		•		1	l
	3	127	<10	SE	FTB	j	130	> 50	FTB	
	4	129	<10	SE	FTB	1				
	5	127	<10	SE	FTB		126	> 50	FTB	l
DS-29B	MEAN:	129]				
							131	> 50	FTB	
							128	> 50	FTB	
							120	- 50	'15	
])							}
						MEAN:	128			

NR: Not Requested

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

• Repair Log

REPAIR LOG

Page: 1 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

\	Neld Data		Vacu	um Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 06	AG	MX - 0	9 / 09	JS	Р	1/3	4	10' DS - 01
9700	AG	MIX - U	9709	J8	P	1/3	1	(2' × 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	Panel 1	2	32' Boot
9101		IVIX - U	9709	33		ranen i		(4' x 4')
9/06	AG	MX - 0	9 / 09	JS	Р	1/2/3	3	232' 'T'
		WIX - U	3700	30		1,2,0		(2' x 2')
9 / 07	AG	MX - 0	9 / 09	JS	P	Panel 2	4	272' Boot
	1.0				<u> </u>	. 4110.2		(4' x 4')
9/07	AG	MX - 0	9 / 09	JS	P	Panel 4	5	328' Boot
	1							(4' x 4')
9 / 06	AG	MX - 0	9/09	JS	P	2/3/4	6	250' "T"
								(2' x 2')
9/06	Р	MX-0	9 / 09	JS	Р	Panel 4	7	243' Boot
				<u> </u>	ļ			(4' x 4')
9 / 06	AG	MX - 0	9 / 09	JS	P	3/4	8	202' Boot
								(4' x 4')
9 / 06	AG	MX - 0	9 / 09	JS	P	3/4	9	195' DS - 02
				 -				(2' x 4') 132' "T"
9 / 06	AG	MX - 0	9 / 09	JS	Р	3/4/5	10	(2' x 2')
								30' "T"
9 / 06	AG	MX - 0	9 / 09	JS	P	5/6/7	11	(2' x 2')
	 			 	-			130' Boot
9 / 06	AG	MX - 0	9/09	JS	P	Panel 6	12	(4' x 4')
	1				<u> </u>			140' "T"
9 / 06	AG	MX - 0	9/09	JS	Р	4/5/6	13	(2' x 2')
0.100	1	107 6	0.100	1 ,,		D16	44	172' Boot
9 / 06	AG	MX - 0	9 / 09	JS	P	Panel 6	14	(4' x 4')
0.106	1	AAV C	0.400	IC		Danal C	45	233' Boot
9 / 06	AG	MX - 0	9 / 09	JS	P	Panel 6	15	(4' × 4')

12/00 - E.D.R.

MARCO MARCON OF MARCHANIA STATE

REPAIR LOG

Page: 2 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	/eld Data		Vacu	ium Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 06	AG	MX - 0	9/09	JS	Р	4/6	16	300' DS - 03
9700	٨٥	IVIX - U	3103	33		4/0	10	(2' x 4')
9 / 06	AG	MX - 0	9/09	JS	Р	Panel 6	17	308' Boot
		IVIX - U	3/03	30	'	1 611010	.,	(4' x 4')
9 / 06	AG	MX - 0	9/09	JS	Р	6/7/8	18	40' "T"
	Α	W/X = O	3/00			6/1/6		(2' x 2')
9 / 07	AG	MX - 0	9/09	JS	Р	8/9	19	30' DS - 04
	ļ <u> </u>							(2' x 4')
9 / 06	AG	MX - 0	9/09	JS	Р	Panel 9	20	20' Boot (Cleanout)
	1.0				<u> </u>			(4' x 4')
9 / 06	AG	MX - 0	9/09	JS	Р	8/9/10	21	46' "T"
					ļ			(2' x 2')
9 / 06	AG	MX - 0	9/09	JS	P	Panel 10	22	148' Boot
								(4' × 4')
9 / 06	AG	MX - 0	9/09	JS	P	Panel 8	23	210' Boot
 	-		 -					(4' x 4') 240'
9 / 06	AG	MX - 0	9/09	JS	P	Panel 10	24	,
	 					 		(2' x 2') 250' Boot
9 / 06	AG	MX - 0	9/09	JS	Р	Panel 10	25	(4' x 4')
-	 				ļ			282' Boot
9 / 06	AG	MX - 0	9/09	JS	P	Panel 8	26	(4' x 4')
								250' DS - 05
9 / 06	AG	MX - 0	9/09	JS	Р	10/11	27	(2' x 4')
	 			 				244' "T"
9 / 06	AG	MX - 0	9/09	JS	Р	10/11/12	28	(2' × 2')
	 	 				 		96' Boot
9 / 06	AG	MX - 0	9/09	JS	P	Panel 10	29	(4' × 4')
	 			 	 			54' "T"
9 / 06	AG	MX - 0	9/09	JS	P	9/10/12	30	(2' × 2')

12/00 - E.D.R.

REPAIR LOG

Page: 3 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Veld Data		Vacu	um Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9/06	AG	MX - 0	9/09	JS	Р	12/13/14	31	154' "T"
3700	7.0	IVIX - U	3103	30	, , , , , , , , , , , , , , , , , , ,	12/13/14	J1	(2' x 2')
9 / 06	AG	MX - 0	9/09	JS	Р	12/13	32	230' DS - 06
3700		IVIX - U	3103	30		12/10		(2' x 4')
9/06	AG	MX - 0	9/09	JS	P	11/12/13	33	250' "T"
3700	1 70	1417 - 0	3/03	30	,	11/12/13		(2' x 2')
9 / 06	AG	MX - 0	9/09	JS	Р	13/14/15	34	162' "T"
3700	7.0	NIX - U	3103	30	'	10/14/10		(2' x 2')
9 / 06	AG	MX - 0	9/09	JS	Р	14/15/16	35	64' 'T'
3700	1 70	IVIX - U	3/03	30		14/13/10		(2' x 2')
9 / 06	AG	MX - 0	9/09	JS	Р	14/16	36	50' DS - 07
9700	7.0	IVIX - U	3/03	30	, r	14/10		(2' x 4')
9/06	AG	MX - 0	9/09	JS	P	15/16/17	37	74' "T"
3700	Ασ	IVIX - U	3/03	30	'	10/10/17		(2' x 2')
9 / 09	cs	MX - 08	9/10	JS	Р	Panel 15	38	384' Boot (Manhole)
3703		IVIX = 00	3710	30		Tarier 15		(8' x 8')
9 / 06	AG	MX - 0	9/10	JS	P	15/17	39	396' DS - 08
3700	ΛΟ	IVIX - O	3710	30		13/1/		(2' x 4')
9 / 07	AG	MX - 0	9/09	JS	Р	18/20	40	75' DS - 09
3701		IVIX	3/03	30	<u>'</u>	10/20		(2' x 4')
9 / 07	AG	MX - 0	9/09	JS	P	18/19/20	41	362' "T"
3707		IVIX - O	5/05	30	'	10/10/20		(2' x 2')
9 / 10	cs	MX - 08	9/10	JS	P	18/19	42	409' Boot (Manhole)
3710		WIX - 00	3710	30		10/13		<u>(8' x 8')</u>
9 / 07	AG	MX - 0	9/09	JS	P	19/20/21	43	366' "T"
3707		IVIX - U	3/03	33	<u>'</u>	19/20/21		(2' x 2')
9 / 07	AG	MX - 0	9/09	JS	Р	20/21/22	44	308' "T"
		IVIX - U	3103	30		20121122		(2' x 2')
9 / 07	AG	MX - 0	9/09	JS	Р	20/22	45	300' DS - 10
12/00 5 70 79		IVIX - U	5/03			20122		(2' x 4')

12/00 - E.D.R.

REPAIR LOG

Page: 4 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Veld Data		Vacu	ium Test D	ata				
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	1	Repair Number	Locations / Comments	
9 / 07	AG	MX - 0	9 / 09	JS	Р	22/24	46	210' DS - 11 (2' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	22/23/24	47	252' 'T'' (2' x 2')	
9/07	AG	MX - 0	9 / 09	JS	Р	21/22/23	48	306' 'T'' (2' x 2')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	23/24/25	49	248' "T" (2' x 2')	
9 / 09	AG	MX - 0	9 / 09	JS	Р	24/25/26	50	176' - 210' (14' x 34')	
9 / 07	AG	MX - 0	9 / 09	JS	P	24/26	51	160' DS - 12 (2' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	26/28	52	132' Boot (4' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	27/28	53	170' - 184' (2' x 14')	
9 / 07	AG	MX - 0	9/09	JS	P	25/27	54	180' DS - 13 (2' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	27/29/30	55	310' "T" (2' x 2')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	27/29	56	220' (2' x 2')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	27/29	57	193' (2' x 2')	
9 / 09	cs	MX - 08	9 / 09	JS	Р	27/28/29	58	183' "T" & Boot (4' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	28/29	59	96' Boot (4' x 4')	
9 / 07	AG	MX - 0	9 / 09	JS	Р	28/29	60	15' DS - 14 (2' × 4')	

12/00 - E.D.R.

REPAIR LOG

Page: 5 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Veld Data		Vacu	ium Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	1 1		Repair Number	Locations / Comments
9 / 07	AG	MX - 0	9 / 09	JS	Р	Number 29/31/32	61	46' "T"
9707	AG	1VIX - U	9709	10	F	29/31/32	01	(2' x 2')
9 / 09	cs	MX - 08	9 / 09	JS	Р	Panel 31	62	138' Boot
9709	03	IVIX - UQ	3103	J3		Pallel 31		(4' x 4')
9 / 09	cs	MX - 08	9/09	JS	P	Panel 31	63	232' Boot
		1017(- 00	3703	30	'	1 21161 31		(4' x 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	29/30/31	64	304' 'T"
					· ·	20/00/01		(2' x 2')
9 / 09	AG	MX - 0	9/10	JS	P	Panel 33	65	404' Boot
					·			(4' x 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	31/33	66	355' DS - 15
	<u> </u>			ļ				(2' x 4')
9/09	cs	MX - 08	9/09	JS	Р	Panel 31	67	195' Boot
	 							(4' x 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	Panel 31	68	75' Boot
				 				(4' x 4') 40' "T"
9 / 07	AG	MX - 0	9/09	JS	P	31/32/33	69	***************************************
	 							(2' x 2') 110' Boot
9 / 07	AG	MX - 0	9/10	JS	P	Panel 35	70	(4' x 4')
	 			 	ļ			160' DS - 16
9 / 09	CS	MX - 08	9/10	JS	P	33/35	71	(2' x 4')
	+				 -			376' "T"
9 / 09	CS	MX - 08	9/10	JS	P	33/34/35	72	(2' x 2')
	 							376' "T"
9 / 09	CS	MX - 08	9/10	JS	Р	34/35/37	73	(2' x 2')
	1			-	 			226' Boot
9 / 09	CS	MX - 08	9 / 10	JS	P	Panel 37	74	(4' x 4')
2 / 22	00	1434 05				25.02		165' DS - 17
9 / 09	CS	MX - 08	9/10	JS	Р	35/37	75	(2' x 4')

12/00 - E.D.R.

REPAIR LOG

Page: 6 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

N	leld Data		Vacu	ium Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 09	cs	MX - 08	9/10	JS	Р	Panel 35	76	158' Boot
3703	- 03	IVIX - 00	3710	30	<u>'</u>	1 ane 33	70	(4' x 4')
9 / 07	AG	MX - 0	9/10	JS	P	35/36/37	77	106' "T"
	ΛΟ	WIX - U	3710	30	'	33/30/37		(2' x 2')
9 / 07	AG	MX - 0	9/10	JS	P	Panel 36	78	58' Boot
	1,10				<u> </u>	1 4.70.00		(4' x 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	R 29/P10	79	Extrusion DS - 18
						1120/110		(2' x 4')
9 / 07	AG	MX - 0	9 / 09	JS	P	18/20	80	358'
								(2' x 2')
9 / 09	AG	MX - 0	9 / 09	JS	P	24/26	81	170'
				ļ	ļ	l		(2' x 2')
9 / 09	cs	MX - 08	9 / 09	JS	P	37/38	82	404' DS - 19
	 			 	 	 		(2' x 4') 242' "T"
9 / 09	CS	MX - 08	9/10	JS	Р	37/38/39	83	
				ļ <u> </u>	 -	 		(2' x 2') 114' "T"
9 / 09	AG	MX - 0	9/10	JS	P	36/37/39	84	**************************************
	 			<u> </u>	 	 		(2' x 2') 106' Boot
9 / 10	AG	MX - 0	9/10	JS	Р	Panel 39	85	(4' x 4')
	 			 	 			25' DS - 20
9 / 09	AG	MX - 0	9/10	JS	P	39/41	86	(2' x 4')
	 			 				77' Boot
9/10	AG	MX - 0	9/10	JS	P	Panel 41	87 -	(4' x 4')
	 			 		 		150' "T"
9 / 09	AG	MX - 0	9/10	JS	Р	39/40/41	88	(2' x 2')
	 				 			170' Boot
9 / 09	AG	MX - 0	9/10	JS	Р	Panel 39	89	(4' x 4')
	 			 	 			198' Boot
9 / 09	cs	MX - 08	9/10	JS	P	Panel 39	90	(4' × 4')

12/00 - E.D.R.

MID-AMERICA LIMING CO

REPAIR LOG

Page: 7 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

W	/eld Data		Vacu	um Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Repair Number Number		Locations / Comments
9 / 09	cs	MX - 08	9 / 10	JS	Р	38/39/40	91	246' "T"
9109	03	IVIX - UO	9710	Jo		30/39/40	31	(2' x 2')
9 / 09	cs	MX - 08	9 / 10	JS	Р	38/40	92	277' Boot
		IVIX - OO	9710	30		30/40	32	(4' x 4')
9 / 09	cs	MX - 08	9/10	JS	Р	40/42/43	93	314' "T"
			37.10			10/12/10		(2' x 2')
9 / 09	AG	MX - 0	9/10	JS	Р	40/41/42	94	162' 'T'
					<u> </u>	10, 11, 12		(2' x 2')
9 / 09	AG	MX - 0	9/10	JS	Р	42/44/45	95	22' "T"
						12. (), (0		(2' x 2')
9/10	AG	MX - 0	9/10	JS	Р	Panel 44	96	90' Boot
								(4' x 4')
9 / 10	AG	MX - 0	9/10	JS	Р	Panel 42	97	148' Boot
	ļ							(4' × 4')
9/10	cs	MX - 08	9/10	JS	Р	42/44	98	210' Boot
	 		·					(4' x 4') 258' Boot
9 / 10	CS	MX - 08	9/10	JS	P	Panel 42	99	(4' x 4')
								330' "T"
9 / 09	CS	MX - 08	9/10	JS	P	42/43/44	100	(2' x 2')
	 							335' DS - 21
9 / 09	CS	MX - 08	9 / 09	JS	P	43/44	101	(2' x 4')
	f							395' Boot (Cleanout)
9 / 09	cs	MX - 08	9 / 09	JS	P	Panel 44	102	(4' x 4')
0.140	1							315' Boot
9 / 10	CS	MX - 08	9/10	JS	Р	Panel 44	103	(4' x 4')
0.140	00	10/ 00	0.1.16	10			404	242' Boot
9 / 10	CS	MX - 08	9/10	JS	P	44/46	104	(4' x 4')
0.140	100	MY	0.146	10		D==-1.40	405	180' Boot
9 / 10	AG	MX - 0	9/10	JS	P	Panel 46	105	(4' × 4')

12/00 - E.D.R.

REPAIR LOG

Page: 8 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Weld Data		Vacu	ium Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 09	AG	MX - 0	9/10	JS	Р	44/46	106	155' DS - 22
3703	AG	IVIX - U	9/10	30	r	44/40	100	(2' x 2')
9 / 10	AG	MX - 0	9/10	JS	Р	Panel 46	107	118' Boot
3710		IVIX - U	3710	30		1 al 101 40		(4' x 4')
9/10	AG	MX - 0	9/10	JS	Р	44/45/46	108	30' "T"
3710	1 70	IVIX - U	9710	33		44/45/40	100	(2' x 2')
9 / 10	AG	MX - 0	9/10	JS	Р	46/48	109	108' Boot
3710	1 7.0	INIX - O	3710		Г	40/40	109	(4' x 4')
9/10	AG	MX - 0	9/10	JS	P	Panel 46	110	167' Boot
9710	1 70	IVIX - U	9710	30		Failei 40	110	(4' x 4')
9 / 09	AG	MX - 0	9 / 10	JS	Р	46/48	111	175' DS - 23
3703	1 7.0	IVIX - U	9710	30		40/40	171	(2' x 4')
9/10	AG	MX - 0	9/10	JS	P	Panel 48	112	217' Boot
	1	IVIX - U	3710	30		and 40		(4' × 4')
9/10	cs	MX - 08	9/10	JS	Р	Panel 46	113	264' Boot
		11174 - 00	0,10			1 41101 40		(4' × 4')
9/10	AG	MX - 0	9/10	JS	P	Panel 48	114	317' Boot
	1.0	1007.	0,10		<u>'</u>	1 and 40		(4' x 4')
9 / 10	cs	MX - 08	9/10	JS	Р	46/47/48	115	354' "T"
		100	37.10			40/4//40		(2' x 2')
9 / 10	cs	MX - 08	9/10	JS	P	47/48/50	116	354' "T"
<u> </u>		MX = 00	37 10			47740700		(2' x 2')
9/10	AG	MX-0	9 / 10	JS	P	48/50	117	315' DS - 24
			07.10			70/00		(2' x 4')
9 / 09	AG	MX-0	9/10	JS	P	48/49/50	118	136' "T"
	1	1,,,,,,	J., 10		\	10,-10,00	.,,	(2' x 2')
9 / 10	AG	MX-0	9/10	JS	P	Panel 49	119	136' Boot
					<u> </u>	. 4,,5, ,6		(4' x 4')
9 / 09	AG	MX - 0	9/10	JS	P	49/50/52	120	136' "T"
2/00 - F.D.7		1407 = 0	07.10		<u> </u>	10/00/02		(2' x 2')

12/00 - *E.D.R.*

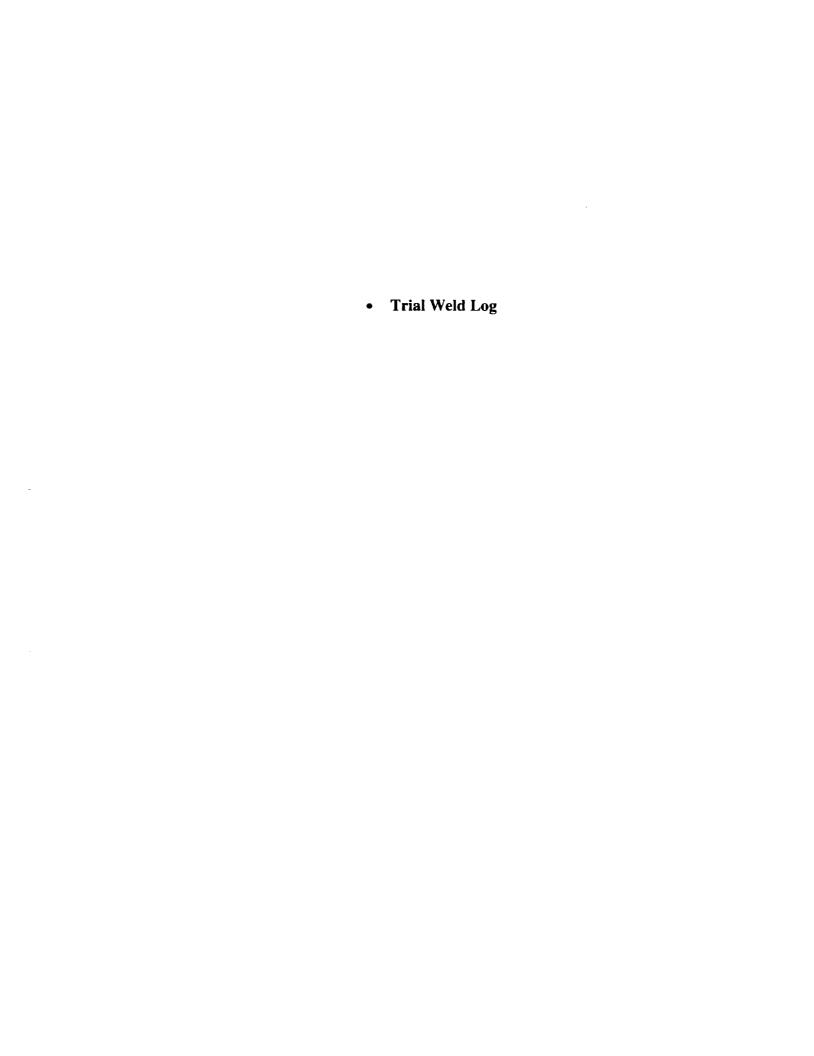
REPAIR LOG

Page: 9 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Veld Data		Vacu	um Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 09	AG	MX - 0	9/10	JS	Р	50/51/52	121	152' 'T'
	Λο	IVIX ~ U	3/10	J3		30/31/32	121	(2' x 2')
9 / 10	AG	MX - 0	9/10	JS	Р	Panel 51	122	181' Boot
	1	1417 0			'	T dilei 31	122	(4' x 4')
9 / 10	AG	MX - 0	9/10	JS	Р	Panel 51	123	234' Boot
	1				, ,		,	(4' x 4')
9/10	AG	MX - 0	9/10	JS	P	Panel 50	124	288' Boot
								(4' x 4')
9/10	cs	MX - 08	9/10	JS	Р	51/53/54	125	336' "T"
			 		ļ			(2' x 2')
9 / 09	cs	MX - 08	9/10	JS	P	Panel 53	126	320' Boot (Manhole)
	 				 	 		(8' x 8') 138' "T"
9 / 10	AG	MX - 0	9/10	JS	P	51/52/53	127	(2' x 2')
				<u> </u>		 		30' DS - 25
9 / 09	AG	MX - 0	9/10	JS	P	52/53	128	(2' x 4')
				 	 	 	····	130' DS - 26
9 / 10	AG	MX - 0	9/10	JS	P	53/55	129	(2' x 4')
	 				<u> </u>	<u> </u>		286' "T"
9/10	cs	MX - 08	9/10	JS	P	53/54/55	130	(2' x 2')
0.440	100	147 0	0.140	10		FF/F0/F7	494	56' "T"
9/10	AG	MX - 0	9/10	JS	Р	55/56/57	131	(2' x 2')
9 / 10	AG	MX - 0	9/10	JS	Р	56/57/58	132	14' "T"
9/10	AG	IVIX - U	9710	J3	<u> </u>	30/37/36	132	(2' x 2')
9 / 10	AG	MX - 0	9 / 10	JS	P	56/58	133	50' DS - 27
	1 70	IVIX - U	3710	30	<u>'</u>	30/30	133	(2' x 4')
9 / 10	AG	MX - 0	9/10	JS	P	58/59	134	30' DS - 28
	1	1000			<u> </u>	55,55	10-7	(2' x 4')
9 / 09	AG	MX - 0	9 / 09	JS	P	R 50/P 24	135	Extrusion DS - 29
200 ET 1		L	<u> </u>		<u> </u>	1 2	,,,,	(2' x 4')

12/00 - £.D.R.


REPAIR LOG

Page: 10 of: 10

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil H.D.P.E. Smooth

V	Veld Data		Vacu	ium Test D	ata			
Date	Welder Initials	Machine Number	Date	Tester Initials	Result (P / F)	Seam Number	Repair Number	Locations / Comments
9 / 09	AG	MX - 0	9/10	JS	Р	R 76/P 35	136	Extrusion DS - 30
3703	Λ.	IVIX - U	3710	33		K 70/F 33	150	(2' x 4')
9 / 09	AG	MX - 0	9/10	JS	Р	39/41	137	115'
	ΛΟ	1417 - 0	3710	30	<u> </u>	00/41	107	(2' x 2')
9 / 09	AG	MX - 0	9/10	JS	Р	41/42	138	6' Anchor Trench
	1,10				'	117,12		(2' x 3')
9 / 10	AG	MX - 0	9/10	JS	P	Panel 61	139	6' Anchor Trench - Fiber Optic Boot
					<u> </u>	, and or		(3' x 3')
9 / 10	AG	MX - 0	9/10	JS	P	59/60	140	6' Anchor Trench
	/							(2' x 3')
9/10	AG	MX-0	9/10	JS	Р	53/55	141	8'
			· · · · · · · · · · · · · · · · · · ·		<u> </u>	30,00		(2' x 2')
9/10	AG	MX - 0	9/10	JS	Р	53/55	142	6' Anchor Trench
	ļ							(2' x 3')
9 / 10	AG	MX - 0	9/10	JS	P	46/48	143	6' Anchor Trench
						 		(2' x 3')
9 / 09	AG	MX 0	9/10	JS	Р	35/36	144	6' Anchor Trench
				<u> </u>	ļ			(2' x 3')
9 / 09	cs	MX - 08	9 / 09	JS	P	18/20	145	6' Anchor Trench
	 			 	}	 		(2' x 3')
9 / 09	cs	MX - 08	9/09	JS	P	16/17	146	6' Anchor Trench
	 			 	 			(2' x 3')
9 / 10	AG	MX - 0	9/10	JS	P	Panel 53	147	4' Anchor Trench - EW 20C Power Boot
	 			<u> </u>	 	} - -}		(3' x 3')
9/10	AG	MX - 0	9/10	JS	P	55/56	148	220' Anchor Trench
	 		L	 	 	 		(2' x 3') 25'
9 / 10	AG	MX - 0	9/10	JS	P	Panel 61	149	***************************************
	+				 	-		(2' x 2')
9 / 10	CS	MX - 08	9/10	JS	P	R 50/P 24	150	DS - 29 Cap
2/00 . 7 7) 7		لـــــا	<u> </u>	L	<u> </u>	<u> </u>		(2' x 20')

12/00 - E.D.R.

TRIAL WELD LOG

Page: 1 of: 2

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

				Extrusio	n Welds	Fusion	Welds _							
Date /	Ambient	Seamer	Machine	Barrel	Preheat	Wedge	Speed		Peel Value	s	Si	near Value	es	/D / E)
Time	Temp.	Initials	Number	Temp.	Temp.	Temp.	Setting		Lbs. / Incl	າ	Lbs. / Inch			(P / F)
9 / 05	70	MS	C - 1	N/A	N/A	750	4.5	102/106	116/119	106/109	136	142	126	Р
08.00h	70	INIO	C - 1	N/A	IN/A	750	4.5	111/114	107/112		133	118		F
9 / 05	70	MSO	C - 4	N/A	N/A	750	4.5	103/116	108/110	100/106	132	135	128	P
08.00h		WISC	-	N/A	N/A	7 30	4,5	111/114	114/114		132	131		<u>г</u>
9 / 05	85	MS	C-1	N/A	N/A	750	4.5	86/86	88/99	90/97	102	97	99	P
12.40h	Ģ 5	IMO	U - 1	N/A	IN/A	750	4.5	95/97	102/102		93	105		
9 / 05	85	MSO	C-4	N/A	N/A	750	5.0	88/91	97/93	90/93	93	86	87	Р
12.45h	- 65 	WISC	0 - 4	N / A	IN/A	750	5.0	91/94	86/99		90	95		F
9/06	65	MS	C-1	N/A	N/A	750	4.5	107/118	103/111	100/103	102	138	131	P
07.40h	05	IVIO	0.1	IN / A	IN/A	750	4.5	100/104	100/108		129	129		
9/06	65	MSO	C-4	N/A	N/A	750	4.5	99/104	106/111	103/111	129	132	128	Р
07.42h	00	MISU	0-4	N/A	N/A	750	4.5	105/116	102/106		126	130		
9 / 06	65	AG	MX - 0	300	270	N/A	N/A	97	107	106	108	110	115	P
07.40h	60	AG	NIX - U	300	270	14 / A	N/A	105	114		124	130		
9/06	85	MS	C-1	N/A	N/A	750	4.5	89/94	89/99	89/98	93	97	97	P
12.55h	00	IVIO		N/A	IN/A	730	4.5	90/91	87/89		98	99		
9 / 06	85	MSO	C - 4	N/A	N/A	750	4.5	82/88	85/90	88/92	98	99	98	Р
12.47h	65	MISO	•	1N / A	IN/A	750	4.5	90/91	87/89		94	99		<u> </u>
9 / 06	85	AG	MX - 0	300	270	N/A	N/A	86	84	104	107	113	107	Р
12.40h	00	AG	MIX - U	,500	210	1477	NIA	94	110		109	111		
9/07	75	MS	C-1	N/A	N/A	750	4.5	111/114	105/109	113/119	129	131	1223	P
07.40h	73	1113	0.1	19 / A	IN/A	7.50	4.5	114/115		115/115	134	134		
9/07	75	MSO	C-4	N/A	N/A	750	4.5	106/123	114/117	111/122	126	131	138	P
07.45h	7.5	11100	0 - 7	177	1877	7.50	7.5	118/126	112/125		129	131		·
9/07	75	AG	MX - 0	300	270	N/A	N/A	101	104	108	132	135	131	P
07.50h	13	70	(IIV - O	JUU	210	11177	11/7	101	108		134	140		г
9/07	75	MSO	C-4	N/A	N/A	750	4.5	84/103	91/91	99/104	97	101	101	Р
09.45h	75	WISO		IN / A	IN/A	130	4.5	96/103	94/102		107	108		
9 / 07	90	MS	C - 1	N/A	N/A	750	4.5	101/102	90/100	94/107	96	98	100	Р
12.50h	30	MIC	J	N / A	1974	190	4.5	99/99	100/104		105	107		Г

12/00 - T.D.R.

Q.C. Initials: $\mathcal{E}.\mathcal{D}.\mathcal{R}$.

TRIAL WELD LOG

Page: 2 of: 2

Project Name: American Chemical Project Location: Griffith, IN Material Description: 60 Mil L.L.D.P.E.

	·			Extrusio		Fusion								
Date /	Ambient	Seamer	Machine	Barrel	Preheat	Wedge	Speed		Peel Values		SI	hear Value	98	(P/F)
Time	Temp.	Initials	Number	Temp.	Temp.	Temp.	Setting		Lbs. / Incl			Lbs. / Incl		(677)
9 / 07	90	MSO	C-4	N/A	N/A	750	4.5	99/100	97/99	106/107	107	109	112	Р
12.55h	30	MISO	U-4	N/A	IN/A	750	4.5	103/104	106/112		104	105		
9 / 07	90	MSO	MX - 0	300	220	N/A	N/A	111	111	112	108	109	111	P
13.00h	30	14130	MIX - O	300	220	NA	NIA	100	114		117	119		
9 / 09	80	AG	MX - 0	300	260	N/A	N/A	99	99	100	115	117	119	P
07.30h	- 00	AG	MIX - O	300	200	NIA	NIA	100	102		120	121		г
9 / 09	80	cs	MX - 08	270	275	N/A	N/A	100	102	103	117	118	112	Р
07.40h	00	0	INIX - 00	210	2/8	1977	N/A	101	105		119	120		Г
9 / 09	100	AG	MX - 0	300	260	N/A	N/A	85	89	88	105	105	106	P
12.20h	100	AG	MIX - U	300	200	17.7	IN / A	87	91		104	107		_
9 / 09	100	cs	MX - 08	270	215	N/A	N/A	85	86	87	99	100	101	Р
12.30h	100	0	MX - 00	2/0	210	N/A	N/A	88	89		103	104		P
9/10	75	cs	MX - 08	270	215	N/A	N/A	115	122	111	134	138	132	Р
07.25h	75	CS	MIX - UO	210	215	N/A	IN / A	114	128		133	135		
9/10	75	AG	MX - 0	300	260	N/A	N/A	100	105	89	107	115	107	P
07.25h	73	AG	MIX - O	300	200	1877	11/7	96	98		120	127		F
9/10	95	AG	MX - 0	300	260	N/A	N/A	89	87	91	92	92	93	Р
12.15h	33	AG	IVIX - U	300	200	N/A	INTA	90	92		94	95		
9/10	95	cs	MX - 08	270	215	N/A	N/A	85	83	87	90	91	95	Р
12.09h	93		MIX - 00	410	215	NIA	IN/A	84	86		91	92		
						_								
	<u> </u>													
	l													
									I					
	1								•••••••		***************************************			

12/00 - E.D.R.

Q.C. Initials: $\mathcal{E}.\mathcal{D}.\mathcal{R}$

Quality Control (QC) Daily Field Report	

Date: 9/4/02		,	Project Name: Am	ierican Chemica	al Services
			Project Number:	N/A	
Day #:1					
			Location:	Griffith, IN	
QC ID: E.D.R.			Ambient Temperature Range	:70	_To85
					
			Installed Today	Installe	d To Date:
Sq. Ft. 60 Mil Liner		Primary	N/A		N/A
		Secondary	N/A		N/A
	.	Textured	N/A		N/A
	Other:	Smooth	0	<u></u>	0
Sq. Ft. N/A Mil Liner		Primary	N/A	- 	N/A
		Secondary	N/A		N/A
	_	Textured	N/A		N/A
	Other:_	N/A	N/A		N/A
Linear Feet Seamed:		Primary	N/A		N/A
		Secondary	N/A		N/A
		Textured	N/A		N/A
	Other:	Smooth	0		0
Linear Feet Reconstructed:		Primary	N/A		N/A .
		Secondary	N/A		N/A
		Textured	N/A	<u> </u>	N/A
	Other:	Smooth	0		0
Percentage Detailed Today		0 %	Total To Date		0%
Percentage Air-Tested Today		%	Total To Date		0%
Percentage V-Boxed Today	-	0%	Total To Date	·	0%
		Typ e	Installed Today		d To Date
PVC	•	N/A	N/A	- 	N/A
Geonet		N/A	N/A	· · · · · · · · · · · · · · · · · · ·	N/A
Geocomposite		N/A	N/A		N/A
Geo-Synthetic Clay Liner (GCL)		N/A	N/A		N/A
Geo-Synthetic Clay Liner (GCL)	230'	N/A	N/A		N/A
Failure Rate =		Initial Falluna			
	-	Initial Failures Initial Samples			
		# Today	% Today	# To Date	%To Date
Initial Destruct Samples		0	,,	0	7010 5410
Initial Destruct Failures	-	0	- 0	0	0
Tracked Destructive Samples	-	0	-	0	
Comments:			Set - Up		
					
QC Print Name: Rol	bertson, E	ric D	Signature Signature	رامر ساراً Date:	9/4/02
110	,, -			<u></u>	

Date:	9/5/02				merican Chemica	l Services
				Project Number.	N/A	
Day #:	2			Client:	E.C.I.	
				Location:	Griffith, IN	
QC ID:	E.D.R.			Ambient Temperature Range	e: 70	_To85
				Installed Today	Installe	d To Date:
Sq. Ft. 60) Mil Liner		Primary	N/A	ı	N/A
•			Secondary	N/A	<u> </u>	N/A
			Textured	N/A		V/A
		Other:	Smooth	96,660	96	5,660
Sq. FtN/	A Mil Liner		Primary	N/A		V/A
			Secondary	N/A		A/A
			Textured	N/A		N/A
		Other:	N/A	N/A	1	V/A
Linear Feet S	eamed:		Primary	N/A		N/A
			Secondary	N/A	<u> </u>	V/A
			Textured	N/A	<u> </u>	V/A
		Other:	Smooth_	4,021	4	021
Linear Feet R	econstructed:		Primary	N/A		N/A
			Secondary	N/A		V/A
			Textured	N/A	1	N/A
		Other:	Smooth	0		0
Percentage D	etailed Today		0 %	Total To Date		0%
Percentage A	ir-Tested Today		100 %			<u>100 </u>
Percentage V	-Boxed Today	-	09	Total To Date		0%
			Turne	Installed Today	Installa	d To Data
PVC			Type	Installed Today		d To Date
Geonet			N/A N/A	N/A N/A		N/A N/A
Geocomposite	_	-	N/A	N/A		N/A
	: Clay Liner (GCL) 1	150'	N/A	N/A		N/A
	Clay Liner (GCL)		N/A	N/A		V/A
Fa	ilure Rate =					
		•	Initial Failures Initial Samples			
			# Today	% Today	# To Date	%To Date
Initial Destruct		-	88	-	8	_
Initial Destruct		-	0	0	0	O
i racked Destr	uctive Samples	-	0	-	0	
Comments:				Deployed Around Several Bo	oots	
	· · · · · · · · · · · · · · · · · · ·					
QC Print Nam	e:Rob	ertson, E	iric, D.	Signature Signature	Date:	9/5/02

Date: 9/6/02			Project Name: American Chemical Service			
				Project Number:	N/A	·
Day #:3			Client:	E.C.I.		
				Location:	Griffith, IN	
QC ID:	E.D.R.			Ambient Temperature Rang	e: 70	To <u>85</u>
		- <u></u>				
				Installed Today	installe	d To Date:
Sq. Ft. 60	Mil Liner		Primary	N/A		N/A
			Secondary	N/A		N/A
			Textured	N/A		N/A
		Other:	Smooth	93,645	19	0,305
Sq. Ft. N/A	Mil Liner		Primary	N/A		N/A
			Secondary	N/A		N/A
			Textured	N/A		N/ <u>A</u>
		Other:	N/A	N/A		N/A
Linear Feet Se	eamed:		Primary	N/A		N/A
			Secondary	N/A		N/A
			Textured	N/A		N/A
		Other:	Smooth	4,546	8	,567
Linear Feet Re	econstructed:		Primary	N/A		N/A
			Secondary	N/A		N/A
			Textured	N/A		N/A
		Other:	Smooth	0		0
Percentage De	etailed Todav		40 9	6 Total To Date		0 %
-	r-Tested Today	•		6 Total To Date		100 %
Percentage V-				% Total To Date		0 %
						
			Туре	Installed Today	<u>Installe</u>	d To Date
PVC		_	N/A	N/A		N/A
Geonet		_	N/A	N/A		N/A
Geocomposite _		N/A	N/A		N/A	
	Clay Liner (GCL) 15		N/A	N/A		N/A
Geo-Synthetic	Clay Liner (GCL) 23	30' -	<u>N/A</u>	N/A		N/A
Fai	lure Rate =			·		
		•	Initial Failures Initial Sample			
			# Today	% Today	# To Date	%To Date
Initial Destruct		-	10	_	18	_
Initial Destruct		-	0	0	0	00
Tracked Destru	uctive Samples	-	0	_	0	
Comments:				Deployed Around Several B	oots & Structures	
					7	
QC Print Name	s: Robe	rtson, E	ric, D.	Signature Signature	Date:	9/6/02
				<u> </u>		

Date:	9/7/02			Project	Name:	American		l Servic	:es
					Number:		N/A		
Day #:	4			Client:_		E.C			
00.15				Location		Griffith			
QC ID:	E.D.R.			Ambien	t Temperature R	lange:	70	_To	90
			·						
				<u> </u>	Installed Today		Installed	1 To Da	<u>ite:</u>
Sq. Ft60	Mil Liner		Primary		N/A		1	N/A	
			Secondary		N/A		1	N/A	
			Textured		N/A			N/A	
		Other:	Smooth		85,647		275	5,952	
Sq. Ft. N/	A Mil Liner		Primary		N/A		1	N/A	
			Secondary		N/A		١	N/A	
			Textured		N/A			N/A	
		Other:	N/A		N/A			N/A	
Linear Feet S	eamed:		Primary		N/A			N/A	
			Secondary		N/A		<u>N</u>	N/A	
			Textured		N/A		<u> </u>	N/A	
		Other:	Smooth_		4,705		13	,272	
Linear Feet R	econstructed:		Primary		N/A		<u> </u>	N/A	
			Secondary		N/A		١	WA.	
			Textured		N/A			√A/A	
		Other:	Smooth		0			0	
Percentage D	etailed Today		20	%	Total To Date		,	50	%
	ir-Tested Today	•			Total To Date			100	
	-Boxed Today		0 '	%	Total To Date			0	<u> </u>
,				- 20 4 5		A16 (1-27 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	<u></u>		
			Туре	<u>1</u>	installed Today		Installed	d To Da	ate
PVC			N/A		N/A			WA_	·
Geonet			N/A		N/A			NA	
Geocomposite			N/A		N/A			N/A	
	Clay Liner (GCL)		N/A		N/A			I/A	
Geo-Synthetic	Clay Liner (GCL)	230'	N/A		N/A			N/A	
En	ilure Rate =								
га	nois Rate -		Initial Fallure Initial Sample		100				
			# Today	•	% Today	# To [Date	%Т	o Date
Initial Destruct	t Samples		12		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		30		
Initial Destruc		-	0	_	0		0		0
	ructive Samples	-	0				0		
Comments:				Deplove	ed Around Sever	al Boots & S	tructures		
QC Print Nam	e Poi	bertson, E	Fric D	Signatu	re C	110	Date:	9/7	/ 02
	1101	JOI WOII, L	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Vigi iatui		- 1000	_ 5500		<u>. VŁ</u>

Date: 9/9/02		Project Name: American Chemical Services				
			Project Number:	N//	Α	
Day #:5			Client:	E.C.I.		
			Location:	Griffith, IN		
QC ID: E.D.R.			Ambient Temperature	Range: 70	To100	
			Installed Toda	y <u>Inst</u>	alled To Date:	
Sq. Ft. 60 Mil Liner		Primary	N/A		N/A	
		Secondary	N/A		N/A	
		Textured	N/A		N/A	
	Other:	Smooth	0		275,952	
Sq. Ft. N/A Mil Liner		Primary	N/A		N/A	
•		Secondary	N/A		N/A	
		Textured	N/A		N/A	
	Other:	N/A	N/A		N/A	
Linear Feet Seamed:		Primary	N/A		N/A	
		Secondary	N/A		N/A	
		Textured	N/A		N/A	
	Other:		0		13,272	
Linear Feet Reconstructed:		Primary	N/A		N/A	
		Secondary	N/A		N/A	
		Textured	N/A		N/A	
	Other:		0		0	
Percentage Detailed Today		259	% Total To Date		75 %	
Percentage Air-Tested Today	•		% Total To Date		100 %	
Percentage V-Boxed Today			6 Total To Date		50 %	
		Туре	installed Today	(Inst	alled To Date	
PVC	_	N/A	N/A		N/A	
Geonet		N/A	N/A		N/A	
Geocomposite		N/A	N/A		N/A	
Geo-Synthetic Clay Liner (GCL) 150' N/A			N/A		N/A	
Geo-Synthetic Clay Liner (GCL) 2	230'	N/A	N/A		N/A	
Failure Rate =						
		Initial Failures Initial Samples				
		# Today	s % Today	# To Date	%To Date	
Initial Destruct Samples		# (Oda)	70 1 Cday	30	7010 Date	
Initial Destruct Failures	-	0	₀	0	_	
Tracked Destructive Samples	-	0		0		
·	-		-			
Comments:			Detailed & V-Boxed			
						
QC Print Name: Rob	ertson, E	ric, D.	_Signature	Dat	e: 9/9/02	

Date: 9 / 10 / 02			Project Name: American Chemical Services				ces
				Number:	N/A	<u> </u>	
Day #:6			Client: E.C.I.				
			Location		Griffith, IN		
QC ID: E.D.R.			Ambient	t Temperature Ran	nge: 70	To	100
			1	notelled Today	Ineta	llad Ta D	ata:
			<u>1</u>	nstalled Today	msta	lled To D	<u>ate:</u>
Sq. Ft. 60 Mil Liner		Primary		N/A		N/A	
		Secondary		N/A		N/A	
		Textured		N/A		N/A	
	Other:	Smooth		0		275,952	
Sq. Ft. N/A Mil Liner		Primary		N/A		N/A	
		Secondary		N/A		N/A	
		Textured		N/A		N/A	
	Other:	N/A		N/A		N/A	
Linear Feet Seamed:		Primary		N/A		N/A	
		Secondary		N/A		N/A	
		Textured		N/A		N/A	
	Other:	Smooth		0		13,272	
Linear Feet Reconstructed:		Primary		N/A		N/A	
		Secondary		N/A		N/A	
		Textured		N/A		N/A	
	Other:	Smooth		0		0	
Percentage Detailed Today		25	%	Total To Date		100	%
Percentage Air-Tested Today	-	0 '	%	Total To Date		100	%
Percentage V-Boxed Today		50	%	Total To Date		100	%
	<u></u>						
		Туре	<u>1</u> :	nstalled Today	<u>Insta</u>	lled To D	<u>ate</u>
PVC		N/A		N/A		N/A	
Geonet	-	N/A		N/A		N/A	
Geocomposite		N/A		N/A		N/A	
Geo-Synthetic Clay Liner (GCL)		N/A		N/A		N/A	
Geo-Synthetic Clay Liner (GCL)	230	N/A		N/A		N/A	
Fallure Rate =							
		Initial Failure Initial Sample		100			
		# Today		% Today	# To Date	%1	To Date
Initial Destruct Samples		0		_	30		
Initial Destruct Failures	-	0		0	0	_	0
Tracked Destructive Samples	-	0			0	_	
Comments:		·····	Detailed	& V-Boxed			
						 	
QC Print Name: Rol	pertson, E	ric, D.	Signatur	e	Date	9/1	0 / 02
					L		

• Certificate of Acceptance for Installed FML

Acceptance For Work As Completed

Date: Sept. 11, 2002 Type: Partial	Substantial	X Final
Project Name: American Chemical Service Project	ect Location:	Griffith, IN
Billing Information: Owners Representative:	E.C.I. / MWH	
Owner:		
Description Of Lined Area: Pane	els 1 - 61	
Material Type: 60 Mil L.L.D.P.E. Smooth	Total 🟚:	275,952
Material Type:	Total	
Material Type:		
Material Type:	Total	
The undersigned, as owner or authorized representations of the project and has plans and specifications of the project. Comments: 3 Manholes - 2 Perforated Cleanour 1 EW 20 C Power Conduit Boot - 4	found it completed in acco	ordance with
1 - Power Conduit @ Pump House	- 1 Power Supply @ Manho	ole Boot
MAL Representative: Robertson, Eric, D.	Title:	Field QC
Signature: Total		
Owner / Representative: Palmer, Stve Signature: Slur Schu	Title: Site	Superintendent
CQA Engineer:	Title:	
Signature:		

APPENDIX G

Chemical Analytical Testing of Borrow Source Material (First Environmental)

• Merrillville Source Sample

• Merrillville Source Sample

MEMORANDUM

27755 Diehl Road, Suite 300 Warrenville, IL 60555

Tel: (630)836-8900 Fax: (630)836-8959

To: Daryl Streed

Date: September 30, 2002

From:

Jon Pehl

Subject: Off Site Root Zone Material Acceptance

Upon review of the ECI Off-Site Root Zone Material submittals and the ECI Imported Soil Certification Letter (dated September 9, 2002), the material is acceptable for use as the root zone material for the Final Cover in the Off-Site Area of the ACS NPL Site. The only issues of note on this material are as follows:

- 1. The arsenic result (6.8 mg/kg) exceeds the U.S. EPA Region IX screening criteria of 2.7 mg/kg. However, this arsenic result is within the regional background concentration range (1.1 to 24 mg/kg) established by a 1994 IEPA study.
- 2. The reporting limits for several semi-volatile compounds (noted on Table 1) exceed either the Region IX PRG or the IDEM RISC Default screening value. This is due to the fact that the instrumentation at the laboratory used could not achieve these levels. However, the results for these compounds are "non-detect" at the instrument detection limit, so that the material is found to be acceptable.

Attachments

Cc: Todd Lewis, MWH Rob Adams, MWH

J:\209\0601 ACS\0119 Final Off-SiteCover\Off Site Matl Accept.doc

Environmental Contractors of Illinois, Inc.

September 9, 2002

Todd Lewis MWH Americas, Inc. 27755 Diehl Rd, Suite 300 Warrenville, IL 60555

E ronmental nun adiation contracting & Illing

> RE: Imported Soil Certification

> > Off-Site Containment Area Engineered Cover

American Chemical Service, Inc. (ACS)

National Priority List (NPL) Site

420 South Colfax Avenue, Griffith, Indiana

€ 0 Nimtz Fd

Loves Park Winois 61111 Dear Mr. Lewis:

This letter will serve as certification that all imported material will meet MWH's specifications. If you have any questions please contact me.

ECI

Sincerely,

ENVIRONMENTAL CONTRACTORS OF ILLINOIS, INC.

PD. Box 2071 es Parktois 61130

Vice President

DLS:IW

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

July 26, 2002

Mr. Randy Price
ENVIRONMENTAL CONTRACTORS OF ILLINOIS
5290 Nimtz Road
Loves Park, IL 61111

Project ID: ACS Superfund Site

First Environmental File ID: 63491-92

Date Received: July 19, 2002

Dear Mr. Price:

The above referenced samples were analyzed as directed on the enclosed chain of custody record.

All analyses were performed in accordance with methods from the USEPA publication, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December, 1996. The specific method references are listed on the Analytical Report.

Results have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods have been met. QA/QC documentation and raw data will remain on file for future reference.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at 630-778-1200.

Sincerely,

Stan Zaworski

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client:

ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID:

ACS Superfund Site; P.O. #15506

Sample Number:

63491

Date Received: Date Taken:

07/19/02 07/18/02

Sample Description: V & H Yard

Time Taken:

l pm

Lab File ID:

63491-92

Date Reported:

07/26/02

Analyte	Result	Units	Date Analyzed	Method
Cyanide	<0.10	mg/kg	07/26/02	9010B/9014
Aluminum	14,500	mg/kg	07/26/02	3050B/6010B
Antimony	<1.0	mg/kg	07/26/02	3050B/6010B
Arsenic	6.8	mg/kg	07/26/02	3050B/6010B
Barium	104	mg/kg	07/26/02	3050B/6010B
Beryllium	0.6	m g/k g	07/26/02	3050B/6010B
Cadmium	<0.1	mg/kg	07/26/02	3050B/6010B
Calcium	5,220	mg/kg	07/26/02	3050B/6010B
Chromium	20.1	mg/kg	07/26/02	3050B/6010B
Çobalt	9,1	mg/kg	07/26/02	3050B/6010B
Соррег	13.4	mg/kg	07/26/02	3050B/6010B
Iron	21,000	mg/kg	07/26/02	3050B/6010B
Lead	21.1	mg/kg	07/26/02	3050B/6010B
Magnesium	4,540	mg/kg	07/26/02	3050B/6010B
Manganese	464	mg/kg	07/26/02	3050B/6010B
Mercury	<0.05	mg/kg	07/24/02	7470 A
Nickel	19.1	mg/kg	07/26/02	3050B/6010B
Potassium	1,910	mg/kg	07/26/02	3050B/6010B
Selenium	1.0	mg/kg	07/26/02	3050B/6010B
Silver	<0.1	mg/kg	07/26/02	3050B/6010B
Sodium	168	mg/kg	07/26/02	3050B/6010B
Thallium	<1.0	mg/kg	07/26/02	3050B/6010B
Vanadium	25.8	mg/kg	07/26/02	3050B/6010B
Zinc	63.2	mg/kg	07/26/02	3050B/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phonc (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client:

ENVIRONMENTAL CONTRACTORS OF IL, INC. Date Received:

Project ID:

ACS Superfund Site; P.O. #15506

Date Taken:

07/19/02

Sample Number: Sample Description: V & H Yard

63491

Time Taken:

07/18/02 1 pm

Lab File ID:

63491-92

Date Reported:

Units

%

Result

07/26/02 Flags

Solids, Total 97.63	
---------------------	--

Volatile Organic Compounds Method 8260B Analysis Date: 07/25/02

Analyte

Analysis Date: 07/25/02		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ng/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethanc	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client:

ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID:

ACS Superfund Site; P.O. #15506

Date Received:

07/19/02

Sample Number:

63491 Sample Description: V & H Yard Date Taken: Time Taken:

Result

07/18/02 l pm

Lab File ID:

63491-92

Date Reported:

Units

07/26/02 Flags

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

07/24/02

Analysis Date:

Analyte

07/25/02

Acenaphthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	< 330	ug/kg
Benzidine .	< 330	ug/kg
Benzo[a]anthracene	< 330	ug/kg
Benzo[b]fluoranthene	< 330	ug/kg
Benzo[k]fluoranthene	< 330	ug/kg
Benzo[g,h,i]perylene	< 330	ug/kg
Benzo[a]pyrene	< 90	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	ug/kg
2-Chlorophenol	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	< 330	ug/kg
Dibenz[a,h]anthracene	< 90	ug/kg
Dibenzofuran	< 330	ug/kg
1,2-Dichlorobenzene	< 330	ug/kg
1,3-Dichlorobenzene	< 330	ug/kg
1,4-Dichlorobenzene	< 330	ug/kg
3,3'-Dichlorobenzidine	< 660	ug/kg
2,4-Dichlorophenol	< 330	ug/kg
Diethylphthalate	< 330	ug/kg
Transfer thereignes		- -

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client: ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID: ACS Superfund Site; P.O. #15506 Date Received: 07/19/02 Sample Number: 63491 Date Taken: 07/18/02 Sample Description: V & H Yard Time Taken: 1 pm Lab File ID: 63491-92 Date Reported: 07/26/02

11. 03431-32	Date Rept	nica.	07720702
Analyte	Result	Units	Flags
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	<i>п</i> Б∖ _К Б	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client:

ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID:

ACS Superfund Site; P.O. #15506

63491

Sample Number: Sample Description: V & H Yard

Lab File ID:

Toxaphene

Date Received:

07/19/02 Date Taken: 07/18/02 Time Taken: 1 pm

63491-92 Date Reported: 07/26/02 Analyte Result Units Flags Pesticides/PCBs Method 3540C/8081A/8082 Preparation Date: 07/24/02 Date Analyzed: 07/26/02 Aldrin < 8.0 ug/kg Aroclor 1016 < 80.0 ug/kg Aroclor 1221 < 80.0 ug/kg Aroclor 1232 < 80.0 ug/kg Aroclor 1242 < 80.0 ug/kg Aroclor 1248 < 80.0 ug/kg Aroclor 1254 < 160 ug/kg Aroclor 1260 < 160 ug/kg alpha-BHC < 2.0 ug/kg beta-BHC < 8.0 ug/kg delta-BHC < 8.0 ug/kg Lindane (gamma-BHC) < 8.0 ug/kg alpha-Chlordane < 80.0 ug/kg gamma-Chlordane < 80.0 ug/kg 4,4'-DDD < 16.0 ug/kg 4,4'-DDE < 16.0 ug/kg 4,4-DDT < 16.0 ug/kg Dieldrin < 16.0 ug/kg Endosulfan I < 8.0 ug/kg Endosulfan II < 16.0 ug/kg Endosulfan sulfate < 16.0 ug/kg Endrin < 16.0 ug/kg Endrin aldehyde < 16.0 ug/kg Endrin ketone < 16.0 ug/kg Heptachlor < 8.0 ug/kg Heptachlor epoxide < 8.0 ug/kg Methoxychlor < 80.0 ug/kg

< 160

ug/kg

Chrysene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Benzo[a]pyrene

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client:

ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID:

Sample Number:

ACS Superfund Site; P.O. #15506

63492

63401-02

Sample Description: V & H Soil Date Received: Date Taken:

07/19/02 07/19/02

Time Taken:

8:30

59

83

39

77

48

< 20

< 50

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Lab File I	D: 63491-9	2	Date Rep	orted:	07/26/02
	Analyte		Result	Units	Flags
	Solids, Total		81.91	%	
	BTEX Method 50	35/8260B			
	Analysis Date:	07/25/02			
	Benzene		< 2.0	ug/kg	
	Toluene		< 5.0	ug/kg	
	Ethyl benzene		< 5.0	ug/kg	
	Xylenes (total)		< 5.0	ug/kg	
	Polynuclear Aroma	atic Compounds Me	thod 3540C/8270C		
	Preparation Date:	07/24/02			
	Analysis Date:	07/25/02			
	Naphthalene		< 25	ug/kg	
	Acenaphthylene		< 50	ug/kg	
	Acenaphthene		< 50	ug/kg	
	Fluorene		< 50	ug/kg	
	Phenanthrene		< 50	ug/kg	
	Anthracene		< 50	ug/kg	
	Fluoranthene		97	ug/kg	
	Pyrene		96	ug/kg	
	Benzo[a]anthracene		59	ug/kg	

First Environme	ntal Labor	ntories			Com	pany N t Addre	ame: 4	57W1	RONA,	ENTA	AL B	ONTR	PACTORS OF IL	UNGIS .	INC.	
1600 Shore Road, Sui		ر بين مقدد : پر	- League Land	·	: City:	LOU	F. P	ARK	MILL	116	<u> </u>		State: I	7	Zip: £	
Naperville, Illinois 60:		300 4434			Phon	e: 81.	5. 65	52/.	4776				For 815, 636		_ZIP:E	·
Phone: (630) 778-1200 24 Hr. Pager (708) 569		778-1233		-	Send	Repor	To:	RAM	V	PRI	2		**************************************	1581		
E-mail: info@firsteny					Same	oled By	RA	NOY	PRI	CE	(AL	(14.		•	•	 -
IEPA Certification 1											180	W/				
Pident Pr. Of	× 5/10-	PERLA	CITE	140 Jan	5		7	7	7			-	7 7 7			·
		er with	3116		•	. /	(B)	/ /	5		Δ	K . Z		•		
P.O. #.:	- OO			•		-/\	\Y\.	\mathcal{L}/\mathcal{L}	* /	S.	$\mathbf{X}\mathbf{X}$					
	.:	•				یع /	λ / β	7 K	·/_ ·	Y	· /	/ <u>፲</u> ኒ	/ /\/			
_	., 🍹 .	,				.5%	ال (Q/		02/	A/	XVX.	6P/			
					1	\$% à	5 / X	Y (X 8		t / (₹ У ′`	Y			
				120-0-1	y V		7		77	Y	7	· Y	(
	8		iption	Matrix	· •					-	 	<u> </u>	Comm	enia .		
7-18-62/ IPM	DIH	YARIJ	<u> </u>	15	17	~		7	~	X	ļ	 -		<u> </u>	<u></u>	102441
	12.		7 4 1							ļ	-					1 0/16/25
1-17-02 B.X	WANT V			<u> </u>	ļ	•		<u> </u>	<u> </u>	<u> </u>	X	X.		 ,		mand
ļ	ļ	يمر	r titiah		<u> </u>		· (*)				<u> </u>	<u> </u>				
	<u> </u>	·· · · ·		 	-				مبنمية	Κ	-	 				
•				<u> </u>	-		7			3	-					
	ļ:	· 		ļ.,	17.	<u> </u>		·	<u> </u>	<u> </u>	ļ					
<u> </u>				<u> </u>	. <	<u> </u>		<u> </u>	 	<u> </u>	 	ļ	<u> </u>			
Project I.D.: ACS SUPERFUNO SITE PO. 4: ISSOC Matrix Codes: S = Soil W = Water O = Other Date Thing Taken Supple Description Matrix THE SUPERFUND WHY VARD acc S THE SUPERFUND SITE Commonts Lab Li Lab																
<u> </u>			<u> </u>	<u> </u>				<u> </u>	1	<u> </u>	ļ ·	<u> </u>		· · · ·	· · ·	
	1 ::	·		<u> </u>	_	ļ		<u> </u>		<u> </u>		<u>.</u>		<u>· · · · · - · - · - · - · - · - · - · -</u>	···	
<u> </u>	<u> </u>	· · · ·		<u> </u>		<u> </u>		L	200	ا	<u> </u>	<u> </u>				
		W i			• •	٠.		•	٠.		•		- A	, —	•	
Cooler Temperature	س ی ای	int,			•••••		•			:			.56			
-	• •	ion:					•			···		• •	Ac Pb).		
20003100 112211 4.		· ··.				•		•							•	
Noted and Special I	nelmictione				•		•						Sa Th			:
140tes and apoetal 1	#34 GC110715.				· · · ·			<u> </u>	•••		•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			 .
				·			.	<u></u> -								
	1	-// -	<u>:</u>				12	<u> </u>		/	/	·				
Called Day	Kinds 1	la basin	BONN 0-5	09	19.0	2 /	0:15	nived D	 {	21	حض	•	Date	7/15	102	1015
	dientia-le				حرب ۱			•		10	1	·			 	7
Relinquished By;			Date/Tj	me		····,	Kec	eived B	y;	/ - ,	<u></u> -	 -	Date/Time			
- 4564	-		-	. • 1										•		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

August 27, 2002

Mr. Randy Price
ENVIRONMENTAL CONTRACTORS OF ILLINOIS
5290 Nimtz Road
Loves Park, IL 61111

Project ID: ACS Superfund Site; P.O. #15506

First Environmental File ID: 63491-92

Date Received: July 19th, 2002

Dear Mr. Price:

Enclosed is an amended report for the above referenced samples. A change has been made to the reporting limits for three Base-Neutral/Acid (semi-volatile) compounds. These results have been flagged with an "M". These reporting limits are based on our laboratory's Method Detection Limit (MDL) Study, which is a statistically derived and theoretical value based upon multiple spiked samples. These represent the lowest values that we can report for this sample. One compound, Benzidine, does not meet the EPA Region 9 PRG for industrial soil samples.

All analyses were performed in accordance with methods from the USEPA publication, <u>Test Methods</u> for Evaluating Solid Waste, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December, 1996.

If future work on this site requires the PRGs to be met, we may consider using alternate methods or seek guidance from Region 9 on methodology.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at 630-778-1200.

Sincerely.

Stan Zaworški Project Manager

depar for

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client: ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID: ACS Superfund Site; P.O. #15506 Date Received: 07/19/02 Sample Number: 63491 Date Taken: 07/18/02 Sample Description: V & H Yard Time Taken: 1 pm

Sample Description: V & H Yard Time Taken: 1 pm
Lab File ID: 63491-92 Date Reported: 08/27/02

Analyte Result Units Flags

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date: 07/24/02 Analysis Date: 07/25/02

Aliatysis Date. 07/25/02			
Acenaphthene	< 330	ug/kg	
Acenaphthylene	< 330	ug/kg	
Anthracene	< 330	ug/kg	
Benzidine	< 30	ug/kg	M
Benzo[a]anthracene	< 330	ug/kg	
Benzo[b]fluoranthene	< 330	ug/kg	
Benzo[k]fluoranthene	< 330	ug/kg	
Benzo[g,h,i]perylene	< 330	ug/kg	
Benzo[a]pyrene	< 90	ug/kg	
Benzoic Acid	< 330	ug/kg	
Benzyl alcohol	< 330	ug/kg	
bis(2-Chloroethoxy)methane	< 330	ug/kg	
bis(2-Chloroethyl)ether	< 330	ug/kg	
bis(2-chloroisopropyl)ether	< 330	ug/kg	
bis(2-Ethylhexyl)phthalate	< 330	ug/kg	
4-Bromophenyl-phenylether	< 330	ug/kg	
Butylbenzylphthalate	< 330	ug/kg	
Carbazole	< 330	ug/kg	
4-Chloroaniline	< 330	ug/kg	
4-Chloro-3-methylphenol	< 330	ug/kg	
2-Chloronaphthalene	< 330	ug/kg	
2-Chlorophenol	< 330	ug/kg	
4-Chlorophenyl-phenylether	< 330	ug/kg	
Chrysene	< 330	ug/kg	
Dibenz[a,h]anthracene	< 90	ug/kg	
Dibenzofuran	< 330	ug/kg	
1,2-Dichlorobenzene	< 330	ug/kg	
1,3-Dichlorobenzene	< 330	ug/kg	
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IEPA Certification #100292

Analytical Report

Client: ENVIRONMENTAL CONTRACTORS OF IL, INC.

Project ID: ACS Superfund Site; P.O. #15506 Date Received: 07/19/02 Sample Number: 63491 Date Taken: 07/18/02 Sample Description: V & H Yard Time Taken: 1 pm

Lab File ID: 63491-92 Date Reported: 08/27/02

Analyte	Result	Units	Flags
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 45	ug/kg	M
N-Nitroso-di-n-propylamine	< 35	ug/kg	M
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

APPENDIX H

Geotechnical Laboratory Testing Results of Root Zone Source Material (K&S Engineers, Inc. [K&S])

9715 KENNEDY AVENUE • HIGHLAND, INDIANA 46322 (219) 924-5231 • (773) 734-5900 • FAX (219) 924-5271

September 11, 2002

File No. 6783

Environmental Contractors of Illinois 5290 Nimtz Road P. O. Box 2071 Loves Park, IL 61111

Attn: Mr. Randy Price

LABORATORY TEST REPORT TESTS ON SANDY LEAN CLAY(MERRILLVILLE) AND SAND AMERICAN CHEMICAL SERVICES 410 S. COLFAX GRIFFITH, INDIANA

Dear Mr. Price:

At your request, K & S Engineers, Inc. (K & S), has completed the laboratory testing of the samples collected at the above referenced site.

The results of the laboratory tests, which were performed on the samples, are presented below.

Table 1: Laboratory Test Results on Samples for ACS Site

Sample ID Sample Classification	A SECTION OF THE SECT		Standard Proctor Test results	Specific Gravity	Coefficient of Permeability	% passing through	Grain-Size curve			
			LL	PL	PΙ			(cm/sec)	#200 (ASTM 1140)	
Sample # 1 (Merrillville)	Dark gray, trace black, Sandy Lean Clay - CL	11.2 %	31	19	12	γ _{dry} = 107.5 pcf Opt. Moist. = 17.5 % (Figure 2)	2.58	1.5 x 10 ⁻⁸ - Sample at 94.7% of Proctor Density	64.3 %	Figure 1
Sample # 2	Grayish brown Fine Sand					γ _{dry} = 109 pcf Opt. Moist. = 11.0 % (Figure 3)				

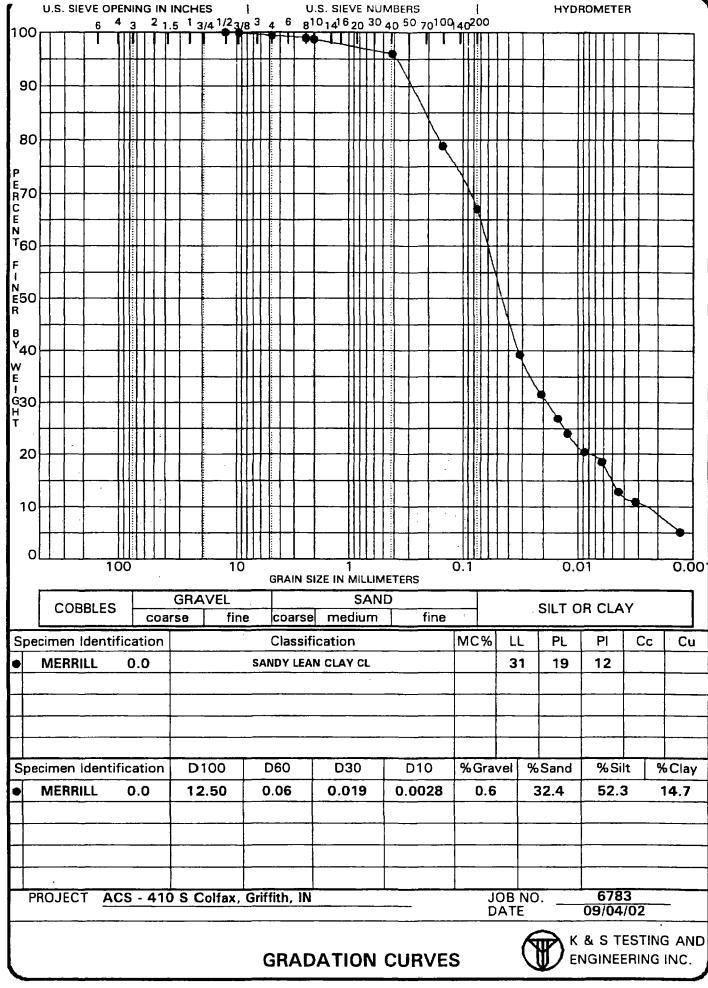
File No. 6783

We appreciate the opportunity to be of service to you. If you have any questions regarding this information, please do not hesitate to call our office.

Very truly yours,

K & S Engineers, Inc.

admakar Srivastava, Ph.D., P.I


Project Engineer

Dibakar Sundi, P.E. Senior Engineer

CA:PS:DS/cam

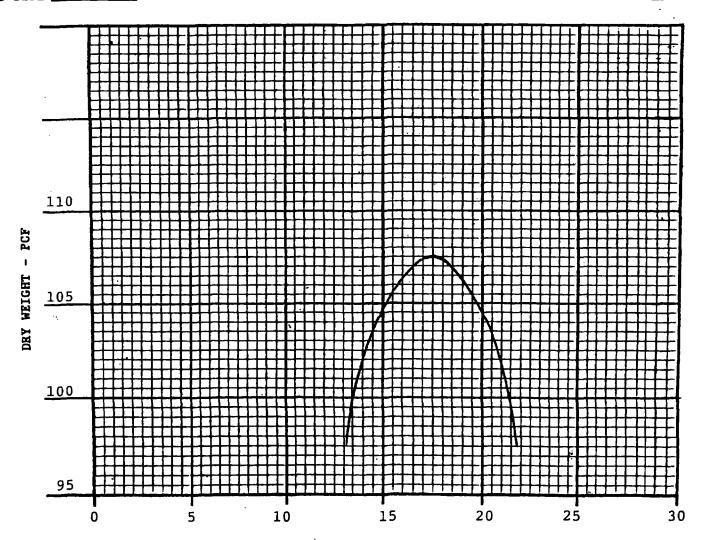
Attachment(s): Plots for particle-size distribution tests and Standard Proctor test results

K & S Engineers, Inc. 9713 Kennedy Avenue - Highland IN 46322 (219) 924-5251

REPORT ON

MOISTURE - DENSITY RELATIONSHIP

C Environmental Contractors
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, Inc. (ECI)
C of Illinois, I


SOURCE OF MATERIAL Borrow

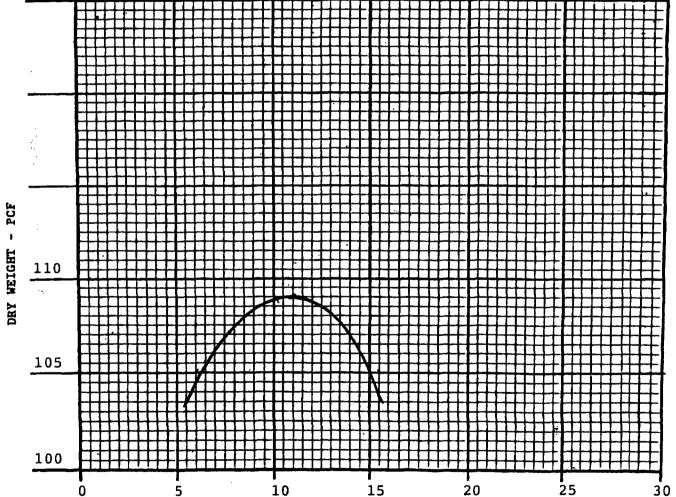
CLASSIFICATION OF MATERIAL Dark gray, trace black sandy lean Clay

METHOD OF COMPACTION Standard Proctor ASTM D 698, Method A

HAMMER WEIGHT 5.5 LBS. FALL 12.0 IN NO. OF LAYERS 3

MOLD SIZE 4.0 INCHES MAX. DENSITY 107.5 PCF OPT. MOISTURE 17.5 Z

MOISTURE CONTENT - PERCENT OF DRY WEIGHT



K & S Engineers, Inc.

REPORT ON

MOISTURE - DENSITY RELATIONSHIP

C Environmental Contractors L of Illinois, Inc. (ECI) 1 5290 Nimtz Road E P.O. Box 2071 T Loves Park, IL 61111	P ACS R 410 S. Colfax Griffith, Indiana E C	FILE NO. 6783 DATE 8-31-02
TLoves Park, IL 61111	T	REF. NO1
SOURCE OF MATERIAL BOTTOW		Wetland Sand Material
CLASSIFICATION OF MATERIAL Grayish	brown fine Sand. trace gr	avel and silt
METHOD OF COMPACTIONStandard Pr		
HAMMER WEIGHT LBS.	fall = 12.0 in No.	OF LAYERS 3
MOLD SIZE 4.0 INCHES MAX. D	ENSITY 109.0 PCF OPT.	MOISTURE 11.0 Z
<u> </u>	▐▗▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊ ▗▊ ▗▊ ▗▊ ▗▊ ▗▊ <u>▃▊</u> ▃▊▗▊▗▊▗▊▗▊▗▊▃▊ <u>▃▊▃▊</u> ▃▊ <u>▃▊</u> ▃▊ <u>▃</u> ▊▃▊	▕▃▗▗ ▗▗▗▗▗▗▗▗▗▗▗

MOISTURE CONTENT - PERCENT OF DRY WEIGHT

9715 KENNEDY AVENUE • HIGHLAND, INDIANA 46322 (219) 924-5231 • (773) 734-5900 • FAX (219) 924-5271

September 30, 2002

File No. 6783-B

Environmental Contractors of Illinois 5290 Nimtz Road P. O. Box 2071 Loves Park, IL 61111

Attn: Mr. Steve Palmer

LABORATORY TEST REPORT
TESTS ON TOPSOIL
GRIFFITH AND MERRILVILLE SAMPLES
AMERICAN CHEMICAL SERVICES
410 S. COLFAX
GRIFFITH, INDIANA

Dear Mr. Palmer:

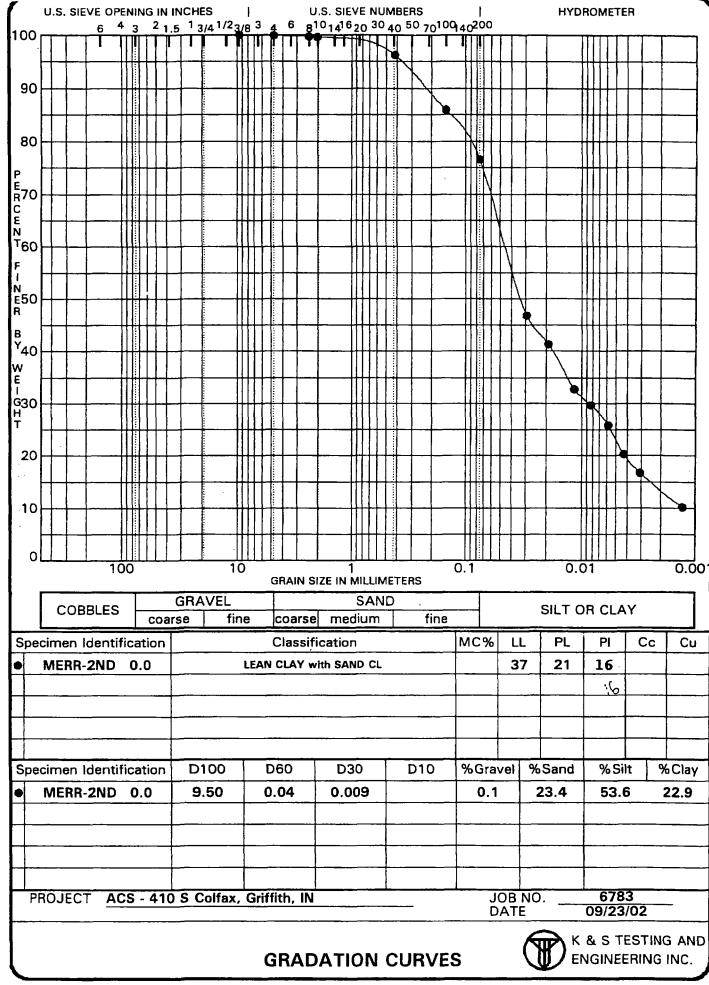
At your request, K & S Engineers, Inc. (K & S), has completed the laboratory testing of the topsoil samples from Griffith and Merrillville. The sample from Griffith was furnished by you and the sample from Merrillville was collected at the above referenced site.

The results of the laboratory tests, which were performed on the samples, are presented below.

Table 1: Laboratory Test Results on Samples for ACS Site

Sample ID Sample Classificati	Sample Classification	Moisture Content	Atterberg Limits			Standard Proctor Test results	Specific Gravity	Coefficient of Permeability (cm/sec)	% passing through	Grain-Size curve
			LL	PL	PI				#200 (ASTM 1140)	
Merrillville (Sample #2)	Dark gray, black Lean Clay with Sand- CL	25.3 %	37	21	16	γ _{dry} = 99 pcf Opt. Moist. = 22.5 % (Ref # 3 - Figure 5)	2.53		76.9 %	Figure 4
Griffth (Sample # 1)	Dark gray, black sandy Clay - CL	19.0%	31	20	11	γ _{dry} = 97 pcf Opt. Moist. = 21.5 % (Ref # 4 - Figure 7)	2.43	7.8 x 10 ⁻⁶ (Compacted at 93.6%)	67.3%	Figure 6
Griffith (Sample # 2)						γ _{dry} = 97.5 pcf Opt. Moist. = 22.0 % (Ref # 5 - Figure 8)				

We appreciate the opportunity to be of service to you. If you have any questions regarding this information, please do not hesitate to call our office at (219) 924-5231.


Very truly yours,

K & S Engineers, Inc.

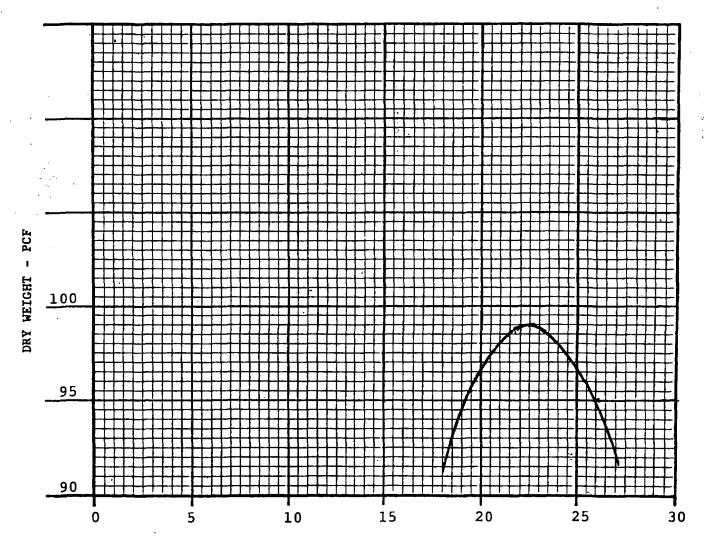
Peter Kostur, LPG Project Engineer Dibakar Sundi, P.E. Project Engineer

CA:PK:DS/cam

Attachment(s): Plots for particle-size distribution tests and Standard Proctor test results

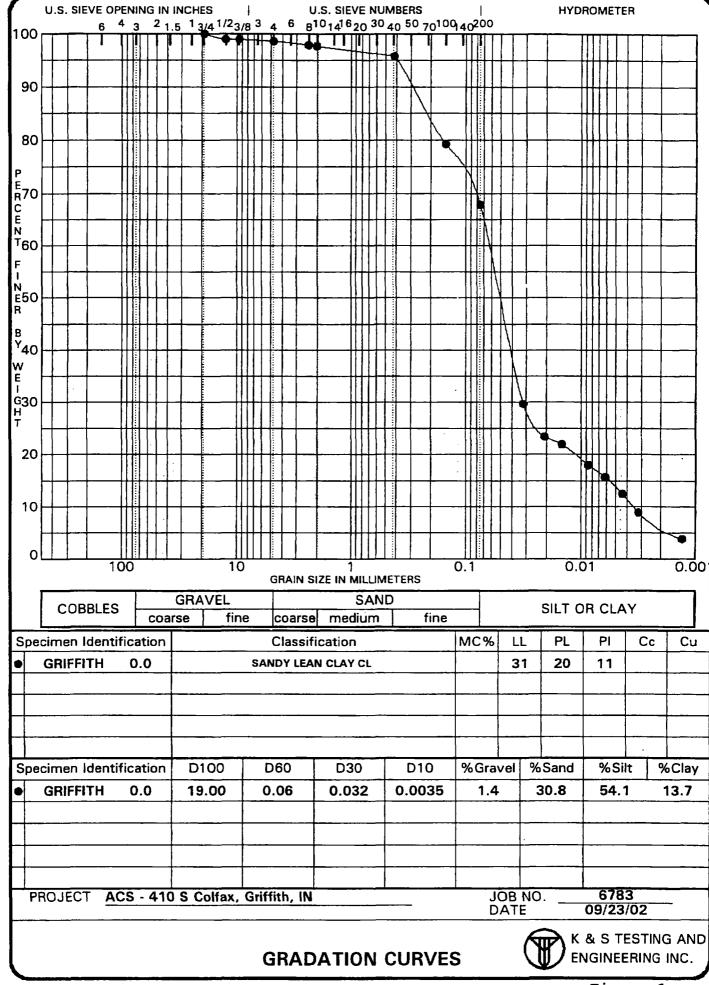
_ _ _

715 Kennedy Avenue - Highland IN 46322 (219) 924-5231 MOISTURE - DENSITY RELATIONSHIP


C Environmental Contractors L of Illinois, Inc. (ECI)	P ACS R 410 S. Colfax	FILE NO. 6783
1 5290 Nimtz Road E P.O. Box 2071	O Griffith, Indiana	DATE 9-19-02
N Loves Park, IL 61111	Č T	REF. NO3 Merriville Source Duplicate Sample

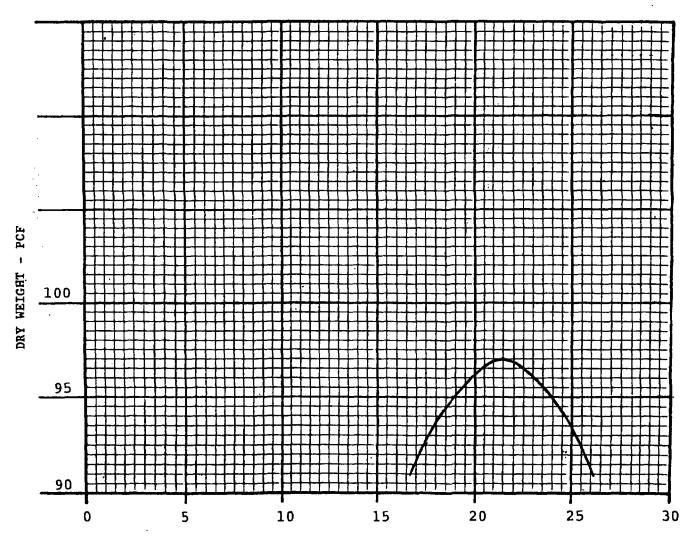
CLASSIFICATION OF MATERIAL Dark gray, black sandy Clay (Topsoil)

METHOD OF COMPACTION Standard Proctor ASTM D 698, Method A


HAMMER WEIGHT 5.5 LBS. FALL 12.0 IN NO. OF LAYERS 3

MOLD SIZE 4.0 INCHES MAX. DENSITY 99.0 PCF OPT. MOISTURE 22.5 Z

MOISTURE CONTENT - PERCENT OF DRY WEIGHT


2c: Client

MOISTURE - DENSITY RELATIONSHIP

P ACS C Environmental Contractors FILE NO. 6783 R 410 S. Colfax L of Illinois, Inc. (ECI) O Griffith, Indiana DATE 9-19-02 | 5290 Nimtz Road E P.O. Box 2071 N Loves Park, IL 61111 REF. NO. 4

Griffith Source SOURCE OF MATERIAL ____ Griffith CLASSIFICATION OF MATERIAL Dark gray, black sandy Clay (Topsoil) METHOD OF COMPACTION _ Standard Proctor ASTM D 698, Method A HAMMER WEIGHT 5.5 LBS. FALL 12.0 IN NO. OF LAYERS 3 MOLD SIZE 4.0 INCHES MAX. DENSITY 97.0 PCF OPT. MOISTURE 21.5 %

MOISTURE CONTENT - PERCENT OF DRY WEIGHT

2c: Client

9715 Kennedy Avenue - Highland IN 46322 (219) 924-5231 MOISTURE - DENSITY RELATIONSHIP

5290 Nimtz Road P.O. Box 2071 Loves Park, IL 61111	O 410 S. Colfax J Griffith, Indiana E C	FILE NO. 6783 DATE 9-25-02 REF. NO. 5 th Source Dunlicate Sample								
Griffith Source Duplicate Sample CLASSIFICATION OF MATERIAL Black, dark gray silty Clay Top Soil METHOD OF COMPACTION Standard Proctor ASTM D 698, Method A MAMMER WEIGHT 5.5 LBS. FALL 12.0 IN NO. OF LAYERS 3										
MOLD SIZE 4.0 INCHES MAX. DE										
DRY WEIGHT - PCF										

MOISTURE CONTENT - PERCENT OF DRY WEIGHT

15

20

25

30

10

5

2c: Client

90

85

APPENDIX I

Compaction and Moisture Testing Results of Root Zone Material (K&S)

• Nuclear Density Testing Results

• Sand Cone Method Testing Results

• Nuclear Density Testing Results

K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231									FIELD COMPACTION TEST			
C Environmental Contractors P ACS Of Illinois, Inc. (ECI) R 410 S. Colfax											FILE NO. 6783	
	5290 Nimtz Road O Griffith, Indi											
			ox 20 Park.	71 IL 611	11	E					REPORT NO. 2A	
T			•	andy Pr		C T					SHEET 1 OF 1	
			OF FIL			MPACT	TION	OF GRA	ADE	METHOD OF COMPACT	TION	
STO	NE.				MOIST		FR	OZEN		VIBRATING PLATE	Х	
SAN			х		DAMP	X	so	- FТ		VIBRATING ROLLER		
CLA					WET		LO	OSE				
SLAG	 G				DRY		FIR		Х	RUBBER TIRE ROLLER_		
		L	ABORA	TORY DA	TA AND F	ROCEE	URE	ES .			EST METHOD	
AST	M D I	557 - 9	1		METH	OD				ASTM D 1556 - 90		
AST	M D 69	98 - 91		Х	МЕТН	ор		A			X	
PROJECT SPECIFICATIONS									OTHER			
REF	EREN	CE TE	EST No.:	1	_ Wetland Sar	nd Materi	al _			SPECIFICATON REQUIREMENTS		
MAX	(IMUN	M DEN	NSITY F	CF 109	.0					90.0	% MAXIMUM DENSITY	
OPT	IMUM	1 MOI	STURE	<u>11</u>	. 0						% RELATIVE DENSITY	
DAT		REF.	TEST No.	DRY DENSITY	MOISTURE PERCENT	COMPA TION		PASS OR		LOCATION	DF TEST	
	_	1	1	PCF	11 2	%		FAIL	SOUTH	EAST AREA (PRAC	CTICE) .	
	-			101.0	11.2	92.		P				
9-1 9-1		1	2 2	103.9		95.			8.0"			
9-1 9-1	_	1		101.7	13.0	93.		P	4.0" 8.0"			
9-1 9-1	- -	1	2A 3	101.8	13.0	93.		P	4.0"			
9-1		1		106.1	11.2	97.		P	8.0"			
2-1 1-6		1	3A 4	106.0	11.6	92.	-	P	4.0"			
9-1		1		100.0	10.1			P	8.0"			
			4A	102.5	10.1	94.	0	P	8.0		· · · · · · · · · · · · · · · · · · ·	
					 				-			
	_								<u> </u>			
								<u> </u>				
 	_					<u> </u>						
						ļ						
	1											

K & S Engineers, Inc. FIELD COMPACTION TEST 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 Environmental Contractors | P | ACS FILE NO. 6783 R 410 S. Colfax of Illinois, Inc. (ECI) 5290 Nimtz Road o Griffith, Indiana DATE: 9-10-02 P.O. Box 2071 REPORT NO. 2B Loves Park, IL 61111 SHEET 1 OF 1 Attn: Mr. Randy Price **COMPACTION OF GRADE** TYPE OF FILL METHOD OF COMPACTION TONE **MOIST FROZEN** VIBRATING PLATE Х **DAMP** VIBRATING ROLLER X Х SOFT SAND LOOSE LAY WET SHEEPS FOOT ROLLER DRY SLAG FIRM Х RUBBER TIRE ROLLER____ LABORATORY DATA AND PROCEDURES FIELD TEST METHOD ASTM D 1557 - 91______ METHOD_____ ASTM D 1556 - 90 _____ ASTM D 698 - 91 X METHOD A Х ASTM D 3017 - 93 _____ PROJECT SPECIFICATIONS OTHER ____ Wetland Sand Material ____ REFERENCE TEST No.: SPECIFICATON REQUIREMENTS MAXIMUM DENSITY PCF 109.0 % MAXIMUM DENSITY 11.0 **OPTIMUM MOISTURE%** % RELATIVE DENSITY REF. TEST DRY MOISTURE COMPAC-PASS DATE LOCATION OF TEST DENSITY PERCENT TION No. OR No. PCF FAIL SOUTH EAST AREA 102.0 10.8 93.6 9 - 10TEST NO. 1 9-10 2 1 NOT TO BE RECORDED TEST NO. 2 9-10 1 3 107.6 11.9 98.7 TEST NO. 3 9 - 104 12.1 1 102.3 93.9 TEST NO. 4

c: Client

K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231									FIELD COMPACTION TEST 2007			
Environmental Contractors of Illinois, Inc, (ECI) of Illinois, Inc, (ECI) 5290 Nimtz Road P.O. Box 2071 Loves Park, IL 61111 Attn: Mr. Randy Price									TILE NO. 6783 DATE: 9-11-02 REPORT NO. 3 SHEET 1 OF 1			
			OF FIL			MPACT	ION (OF GRA	ADE	METHOD OF COMPACTION		
STON	E				MOIST		FRO	ZEN		VIBRATING PLATE		
SAND			Х		DAMP		SOF	T		VIBRATING ROLLER	_	
CLAY					WET	х	LOC)SE		SHEEPS FOOT ROLLER	_	
SLAG	-			-	DRY		FIRE	М	· · · · · · · · · · · · · · · · · · ·	RUBBER TIRE ROLLER	_	
		L	ABORA	TORY DA	TA AND P	ROCED	URE	s	- 1 /	FIELD TEST METHOD		
ASTM	I D 155	57 - 9	1		МЕТН	OD				ASTM D 1556 - 90	_	
ASTM	1 D 698	8 - 91		X	МЕТН	OD		A		ASTM D 3017 - 93 X	_	
?ROJ	ECT S	PEC	IFICAT	IONS						OTHER		
			ST No.:		Wetland Sand	Material			 -	SPECIFICATON REQUIREMENTS		
				CF 109.						% MAXIMUM DENSITY		
OPTI	$\neg \neg$	\neg		<u>, 11.</u>				<u> </u>		% RELATIVE DENSITY		
DATE		EF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPA TION		PASS OR FAIL		LOCATION OF TEST		
9-1	1	1	1	110.3	12.5	100	+		LOCAT	ION #2		
9-1	1	1	2	109.1	13.4	100	+		LOCAT	ION #5		
3 −1	1	1	3	111.3	13.6	10)	+		LOCAT	ION #7		
9-1	1	1	4	116.2	14.0	100	+		LOCAT	ION #6		
3 −1	1	1	5	110.0	10.0	100	+	· —	LOCAT	ION #8		
									-			
	- 										-	

K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231

FIELI) COM	PACT	ION	TEST

	Environmental Contractors of Illinois, Inc. (ECI)		ACS 410 S. Colfax	FILE NO.	6	783
l	5290 Nimtz Road		Griffith, Indiana	DATE: 9	-12-	02
	P.O. Box 2071 Loves Park, IL 61111	E		REPORT NO) .	4
I	Attn: Mr. Randy Price	T		SHEET 1	OF	1

N L	oves 1	Park,	IL 611	11	E				REPORT NO. 4			
ı ı	ttn: 1	Mr. R	andy Pr	ice	Ť				SHEET 1 OF 1			
<u></u>	TYPE	OF FIL	LL	СО	MPACTIC	ON OF GR	ADE	METHOD OF COMPACT	TION			
STONE		-		MOIST	F	ROZEN		VIBRATING PLATE				
SAND		х		DAMP	S	SOFT		VIBRATING ROLLER				
CLAY				WET	ı	LOOSE		SHEEPS FOOT ROLLER_				
SLAG				DRY	X F	FIRM	<u> </u>	RUBBER TIRE ROLLER_				
-	ı	ABORA	TORY DA	TA AND P	ROCEDU	RES	·	FIELD T	TEST METHOD			
ASTM	D 1557 - 9	1		МЕТН	OD			ASTM D 1556 - 90				
ASTM	D 698 - 91		X	МЕТН	OD	A			X			
PROJE	CT SPEC	IFICAT	ions					OTHER				
REFER	ENCE TI	EST No.:	1	Wetland Sa	ind Material			SPECIFICATON REQUIREMENTS				
MAXIN	MUM DEI	NSITY F	PCF 109	.0			 -					
OPTIM	IUM MOI	STURE	<u>11</u>	. 0				% RELATIVE DENSITY				
DATE	REF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPAC- TION %	PASS OR FAIL		LOCATION	OF TEST			
9-12	1	1	115.9	4.9	100+		LOCAT	ION #5				
9-12	1	2	117.7	5.4	100+		LOCAT	ION #5				
9-12	1	3	107.3	8.5	98.4		LOCAT	ION #7				
9-12	1	4	119.5	6.8	100+		LOCAT	ION #6				
9-12	1	5	114.5	8.4	100+		LOCAT	ION #9				
9-12	1	6	110.4	9.1	100+		LOCAT	ION #10				
9-12	1	7	115.9	6.2	100+		LOCAT	ION #11				
9-12	1	8	116.7	7.7	100+		LOCAT	ION #12				
9-12	1	9	113.0	6.4	100+		1	ION #13				
9-12	1	10	115.9	5.1	100+		LOCATION #14					
9-12	1	11	117.1	4.9	100+		LOCATION #15					

LOCATION #16

c: Client

9-12

1

12

116.4

4.0

100+

K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231									FIELD COMPACTION 4 8 8			
Environmental Contractors of Illinois, Inc, (ECI) of Illinois, Inc, (ECI) R 410 S. Colfax Griffith, India P.O. Box 2071 Loves Park, IL 61111 Attn: Mr. Randy Price								ana	FILE NO. 6783 DATE: 9-13-02 REPORT NO. 5 SHEET 1 OF 1			
	Att		OF FIL			MPACT	10N 01	F GRA	DE	METHOD OF COMPACT	<u> </u>	
STO	NE				MOIST		FROZ	EN		VIBRATING PLATE		
SAN	ID		х		DAMP		SOFT					
CLA	Υ			······································	WET		LOOS	E				
SLA	G				DRY		FIRM			RUBBER TIRE ROLLER_		
		L	ABORA	TORY DA	TA AND P	ROCE	URES			FIELD T	EST METHOD	
AST	M D	1557 - 9	1		МЕТН	OD				ASTM D 1556 - 90		
				X						_	<u> </u>	
				IONS	_					OTHER		
			EST No.:	CF 109.	_ Wetland Sai	na Materi	ai			SPECIFICATON REQUIREMENTS		
			STURE	11							% RELATIVE DENSITY	
DA	TE	REF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPA TION	<i>i</i>	PASS OR FAIL		LOCATION	OF TEST	
— 9-	13	1	1	115.7	8.0	100	+		LOCAT	ION #2		
9-	13	1	2	115.8	8.8	100	+		LOCAT	ION #5		
9-	13	1	3	119.7	6.4	100	+		LOCAT	ION #7		
9-	13	1	4	122.1	6.2	100	+		LOCAT	ION #6		
9-	13	1	5	113.8	7.9	100	+		LOCAT	ION #8		
ļ 										· · · · · · · · · · · · · · · · · · ·	·	
' '												
												
_												
												

z: Client

FIELD COMPACTION TEST K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 Environmental Contractors P ACS FILE NO. 6783 $_{R}$ 410 S. Colfax of Illinois, Inc, (ECI) Griffith, Indiana 5290 Nimtz Road DATE: 9-16-02 P.O. Box 2071 REPORT NO. Loves Park, IL 61111 SHEET 1 OF Attn: Mr. Randy Price METHOD OF COMPACTION COMPACTION OF GRADE TYPE OF FILL VIBRATING PLATE_____ MOIST **FROZEN** STONE VIBRATING ROLLER_ DAMP SOFT SAND WET X X LOOSE SHEEPS FOOT ROLLER CLAY DRY FIRM RUBBER TIRE ROLLER **3LAG** FIELD TEST METHOD LABORATORY DATA AND PROCEDURES ASTM P 1557 - 91 ______ METHOD_____ ASTM D 1556 - 90_____ ASTM D 698 - 91 X METHOD A ASTM D 3017 - 93 _____ PROJECT SPECIFICATIONS_____ OTHER REFERENCE TEST No.: 2 Merriville Source Material SPECIFICATION REQUIREMENTS MAXIMUM DENSITY PCF 107.5____ % MAXIMUM DENSITY OPTIMUM MOISTURE% ___17.5 % RELATIVE DENSITY MOISTURE COMPAC-REF. TEST DRY PASS LOCATION OF TEST DENSITY PERCENT TION OR Na. No. PCF % FAIL 86.1 92.6 18.8 LOCATION #17 9-16 2 88.1 RETEST OF TEST #17 9-16 2 94.7 15.3 9-16 2 96.9 17.7 90.1 LOCATION #18 3 9 - 1689.4 17.9 83.2 LOCATION #19 4 9-16 94.7 18.3 88.1 LOCATION #20 87.9 9-16 2 6 20.5 81.8 LOCATION #21 9-16 2 7 89.0 20.8 82.8 LOCATION #21 95.2 2 9-16 8 17.9 RETEST OF LOCATION #20 88.6 9-16 2 9 90.7 84.4 RETEST OF LOCATION #19 17.8 2 9-16 10 89.9 19.7 83.6 RETEST OF LOCATION #19 9-16 11 91.2 24.3 84.8 RETEST OF LOCATION #21 9-16 12 90.0 19.3 83.7 RETEST OF LOCATION #21 9-16 92.6 RETEST OF LOCATION #17 13 17.1 86.1

	97151		K & S En Avenue, Highlar		FIELD COMPACTION TEST				
of 52 P. Lo	Illi 90 Ni O. Bo ves F	nois mtz ox 20 Park,		(ECI)	R 41	CS 10 S. Co riffith,		ana	FILE NO. 6783 DATE: 9-17-02 REPORT NO. 7 SHEET 1 OF 1
		OF FIL			MPACT	ION OF GRA	ADE	METHOD OF COMPAC	TION
STONE				MOIST		FROZEN		VIBRATING PLATE	
SAND				DAMP	х	SOFT		VIBRATING ROLLER	x
CLAY		х		WET		LOOSE	· · · · · · · · · · · · · · · · · · ·	SHEEPS FOOT ROLLER_	
SLAG				DRY		FIRM	х	RUBBER TIRE ROLLER_	
	I.	ABORA	TORY DAT	A AND P	ROCED	URES		FIELD 1	TEST METHOD
ASTM D	1557 - 9	1		МЕТН	OD		_	ASTM D 1556 - 90	
\STM D	698 - 91		X	МЕТН	OD	A		ASTM D 3017 - 93	<u>X</u>
			IONS					OTHER	
REFERI						rial			N REQUIREMENTS
			PCF 107. 17.						
DATE	REF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPAI TION		OFF S	LOCATION ITE - LANDFILL	% RELATIVE DENSITY OF TEST
	2	1	95.1	22.6	88.4	1		NO. 22	
9-17	2	2	87.1	26.4	81.0)	TEST	NO. 23	
}−17	2	3	91.7	22.3	85.3	3	TEST	NO. 24	
9-17	2	4	99.6	20.7	92.6	5	TEST	NO. 25	
									·····
				··-					

FIELD COMPACTION TEST K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 Environmental Contractors P ACS FILE NO. 6783 R 410 S. Colfax of Illinois, Inc. (ECI) O Griffith, Indiana 5290 Nimtz Road DATE: 9-24-02 P.O. Box 2071 E REPORT NO. Loves Park, IL 61111 SHEET 1 OF 2 Attn: Mr. Randy Price TYPE OF FILL **COMPACTION OF GRADE METHOD OF COMPACTION FROZEN** MOIST VIBRATING PLATE____ STONE DAMP SOFT SAND X VIBRATING ROLLER Х WET LOOSE CLAY SHEEPS FOOT ROLLER DRY FIRM X SLAG RUBBER TIRE ROLLER LABORATORY DATA AND PROCEDURES FIELD TEST METHOD ASTM D 1557 - 91______ METHOD___ ASTM D 1556 - 90 ASTM D 698 - 91 X METHOD A ASTM D 3017 - 93 _____ X PROJECT SPECIFICATIONS___ OTHER 2 Merriville Source Material REFERENCE TEST No.: SPECIFICATON REQUIREMENTS MAXIMUM DENSITY PCF 107.5 % MAXIMUM DENSITY 17.5 OPTIMUM MOISTURE% % RELATIVE DENSITY PASS REF. TEST DRY MOISTURE COMPAC-DATE **LOCATION OF TEST** DENSITY PERCENT TION OR PCF FAIL 9-24 21.5 TEST NO. 22 - RETEST 2 1 91.7 85.3 9 - 242 2 97.3 21.1 90.5 TEST NO. 23 - RETEST 9-24 2 3 93.4 20.8 86.9 TEST NO. 24 - RETEST 9 - 242 4 96.1 18.2 89.4 TEST NO. 25 - RETEST 9 - 242 5 92.0 18.2 85.6 TEST NO. 26 17.5 9 - 242 6 87.3 81.2 TEST NO. 27 9-24 2 7 99.4 18.1 92.5 TEST NO. 28 TEST NO. 8 92.3 18.2 85.9 29 9 - 249 - 242 94.3 20.0 87.7 TEST NO. 30 2 10 94.5 15.7 87.9 9 - 24TEST NO. 31 9-24 2 11 92.9 17.5 86.5 TEST NO. 32 9 - 242 12 93.3 17.5 86.8 TEST NO. 33 2 9-24 13 105.2 16.5 97.9 TEST NO. 34

RETEST OF TEST NO. 34

TEST NO. 35

z: Client

9 - 24

9-24

2

2

14

98.7

15 87.3

15.2

15.6

91.8

81.2

_ % RELATIVE DENSITY

METHOD OF COMPACTION

VIBRATING PLATE

VIBRATING ROLLER_____

10/28/2003 10:01 8156364304 K & S Engineers, Inc.

TYPE OF FILL

OPTIMUM MOISTURE% 22.0

STONE

SAND

	-	
9715 Kennedy Avenue	Highland, IN 46322, Phone (219) 924 5231

MOIST

DAMP X

c	Environmental Contractors of Illinois, Inc. (ECI)	P ACS R 410 S. Colfax	FILE NO. 6783
I	5290 Nimtz Road	O Griffith, Indiana	DATE: 9-24-02
E N	P.O. Box 2071 Loves Park, TL 61111	E	REPORT NO. 8
ľ	Attn: Mr. Randy Price	T	SHEET 2 OF 2

COMPACTION OF GRADE

FROZEN

SOFT

ECI

CLAY X	WET	LOOSE		SHEEPS FOOT ROLLER
SLAG	DRY	FIRM X	(RUBBER TIRE ROLLER
LABORA	TORY DATA AND PRO	CEDURES		FIELD TEST METHOD
ASTM D 1557 - 91	METHOD			ASTM D 1556 - 90
ASTM D 698 - 91	Х метнор	A		ASTM D 3017 - 93 X
PROJECT SPECIFICATI	ONS			OTHER
REFERENCE TEST No.:	4 Griffith Source	SPECIFICATION REQUIREMENTS		
MAXIMUM DENSITY P	CF <u>97.0</u>			% MAXIMUM DENSITY

DATE	REF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPAC- TION %	PASS OR FAIL	LOCATION OF TEST
9-24	4	16	87.0	21.2	89.6		TEST NO. 36
9-24	4	17	95.4	16.9	98.3		TEST NO. 37
9-24	4	18	86.3	13.8	88.9		TEST NO. 38
9-24	4	19	87.0	14.7	89.5		TEST NO. 39
						•	
				-			
					-		
			. •				

2c: Client

,		9715	Kennedy	K & S En Avenue, Highla	gineers, nd, IN 46322	Inc. Phone (2)	[19) 924 5 231)CT 07	2002 FIELD COME	PACTION TEST	
1 5 2 7	Environmental Contractors of Illinois, Inc, (ECI) R 410 S. Colfax 5290 Nimtz Road P.O. Box 2071 E C T ACS CT T					R 41 O G1 J E	ana [FILE NO. 6783 DATE: 9-26-02 REPORT NO. 9 SHEET 1 OF 1			
		TYPE	OF FII	L L	CO	MPACT	ION OF GRA	ADE	METHOD OF COMPACTIO	ON	
STO	NE				MOIST		FROZEN		VIBRATING PLATE		
ANنو	D				DAMP		SOFT		VIBRATING ROLLER		
CLA	Y		х		WET		LOOSE		SHEEPS FOOT ROLLER		
PLA	G				DRY		FIRM		RUBBER TIRE ROLLER		
		L	ABORA	ATORY DAT	A AND F	OCED	URES		FIELD TES	т метноd	
AST	M D	1557 - 9	1	X	MF Male	n	& Materia		ASTM D 1556 - 90	·····	
ST	M D	698 - 91		<u> </u>	_ ²⁰ гэ _{хио} ч н	OD SOY	Griffith Sou	ce Materie	ASTM D 3017 - 93	<u> </u>	
RO	JECT	r spec	IFICAT	IONS	Mello.	Velin.	Griffith SOL		OTHER		
						- —					
				PCF 109.					%		
DAT		M MUI	TEST	DRY	MOISTURE	COMPA				RELATIVE DENSITY	
- DA		No.	No.	DENSITY PCF	PERCENT	TION			LOCATION OF	TEST	
-2	26	2	1	97.9	19.0	91.1		RETES!	r OF TEST #22	······································	
9-2	26	2	2	95.4	17.7	88.8		RETEST	r OF TEST #25		
-2	26	2	3	96.1	21.2	89.4		RETES!	r OF TEST #23	<u> </u>	
9-2	26	2	4	99.0	18.0	92.1		RETES'	r of TEST #24		
- 2	26	2	5	95.7	17.6	89.0	·	RETES'	r OF TEST #30		
9-2 1 —	26	1	6	102.0	11.9	93.6		RETES'	r OF TEST #34		
- 2	26	4	7 ·	91.8	23.4	94.6	5	RETES'	r OF TEST #37		
^ <u>- 2</u>	26	4	8	88.4	20.2	91.1	L	TEST	42		
<u> </u>											
<u> </u>										· · · · · · · · · · · · · · · · · · ·	
<u> </u>						<u> </u>					
	_ T										
L_											
· :	ci	ient	\ 								

		ند
		نْد
		3
		_
		.
		لم
		نـ
		ئ
		_
		_
		٠

1	9715	Kennedy	K & S El Avenue, Highl		FIELD COMPACTION TEST				
C Environmental Contractors P ACS of Illinois, Inc, (ECI) R 410 I 5290 Nimtz Road O Grit E P.O. Box 2071 N Loves Park, IL 61111 Attn: Mr. Randy Price							olfax , Indi	FILE NO. 67 DATE: 9-27- REPORT NO. 1 SHEET 1 OF	02
·		E OF FII			MPACTI	ON OF GR	ADE	METHOD OF COMPACTION	
STONE				MOIST		FROZEN		VIBRATING PLATE	
SAND			DAMP	х	SOFT		VIBRATING ROLLER		
CLAY		Х	<u> </u>	WET		LOOSE		SHEEPS FOOT ROLLER	
SLAG			<u></u>	DRY		FIRM	Х	RUBBER TIRE ROLLER	
Г <u> </u>	1	ABOR	ATORY DA	TA AND F	PROCEDI	URES		FIELD TEST METHOD	
ASTM	D 1557 - 9	91		МЕТН	OD			ASTM D 1556 - 90	
ASTM	D 698 - 91	·	X	метн	OD	A		ASTM D 3017 - 93 X	
PROJE	CT SPEC	CIFICAT	ions					OTHER	
	RENCE T			_ Griffith Sour	ce Materia	' 		SPECIFICATON REQUIREMENTS	
1			PCF <u>97.</u>					% MAXIMUM DENSI	
DATE	IUM MOI	TEST	DRY	MOISTURE	COMPAG	PASS		% RELATIVE DENSIT	· ·
	No.	No.	DENSITY PCF	PERCENT	TION %	OR FAIL		LOCATION OF TEST	
3-27	4	1	90.7	13.1	93.5		TEST	¥41	
9-27	4	2	98.0	11.7	100+		TEST	4 4 8	
1-27	4	3	90.7	19.8	93.5		TEST	# 4 9	<u> </u>
9-27	2	4	86.9	17.7	80.8		RETES	r OF TEST #23	
·-·									
	1			<u></u>					
2: (Client		<u> </u>	<u> </u>	L		<u> </u>	······································	

FIELD COMPACTION TEST K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 Environmental Contractors | P | ACS FILE NO. 6783 R 410 S. Colfax of Illinois, Inc. (ECI) L. o Griffith, Indiana 5290 Nimtz Road DATE: 9-30-02 E P.O. Box 2071 REPORT NO. 11 Loves Park, IL 61111 SHEET 1 OF 1 Attn: Mr. Randy Price TYPE OF FILL COMPACTION OF GRADE METHOD OF COMPACTION MOIST **FROZEN STONE** VIBRATING PLATE____ SAND DAMP SOFT VIBRATING ROLLER____ Х SHEEPS FOOT ROLLER_____ CLAY Х WET LOOSE RUBBER TIRE ROLLER____ DRY FIRM **SLAG** X LABORATORY DATA AND PROCEDURES FIELD TEST METHOD ASTM D 1557 - 91 ______ METHOD__ ASTM D 1556 - 90 ASTM D 698 - 91 X METHOD A X ASTM D 3017 - 93 _____ PROJECT SPECIFICATIONS OTHER 4 Griffith Source Material REFERENCE TEST No.: SPECIFICATON REQUIREMENTS MAXIMUM DENSITY PCF 97.0 % MAXIMUM DENSITY OPTIMUM MOISTURE% 21.5% RELATIVE DENSITY MOISTURE COMPAC-DATE REF. TEST DRY PASS **LOCATION OF TEST** No. DENSITY PERCENT TION No. FAIL PCF 20.4 95.6 **TEST #38** 9-30 1 92.8 4 93.4 9-30 2 90.6 20.3 **TEST #37** 3−30 3 85.3 19.8 87.9 TEST #36 4 9 - 304 92.6 22.0 95.4 **TEST #43** 81.2 3-30 78.8 21.1 **TEST #46** 9 - 304 88.8 20.2 97.5 **TEST #54** 6 85.5 4 20.1 3-30 83.0 TEST #53

K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 FIELD COMPACTION TEST PACS Environmental Contractors FILE NO. 6783 R 410 S. Colfax of Illinois, Inc, (ECI) Griffith, Indiana 5290 Nimtz Road DATE: 9-30-02 P.O. Box 2071 E C T REPORT NO. 12 Loves Park, IL 61111 SHEET 1 of 1 Attn: Mr. Randy Price

TYPE OF FILL			COMPACTION OF GRADE				METHOD OF COMPACTION	
STONE				MOIST		FROZEN		VIBRATING PLATE
SAND				DAMP	х	SOFT		VIBRATING ROLLER
CLAY		x		WET LOOSE			SHEEPS FOOT ROLLER	
SLAG			DRY		FIRM	X	RUBBER TIRE ROLLER	
	1	.ABOR/	ATORY DAT	TA AND F	ROCED	URES		FIELD TEST METHOD
ASTM D	1557 - 9)1		МЕТН	OD			ASTM D 1556 - 90
ASTM D	698 - 91	l	Х	метн	OD	A		ASTM D 3017 - 93 X
PROJEC	T SPEC	IFICAT	TONS					OTHER
REFERE	ENCE TI	EST No.	<u> 4</u>	Griffith Sourc	e Material			SPECIFICATON REQUIREMENTS
,			PCF <u>97.</u>					% MAXIMUM DENSITY
OPTIMU	јм мо	STURE	<u>21</u>	. 5			 _	% RELATIVE DENSITY
DATE	REF. No.	TEST No.	DRY DENSITY PCF	MOISTURE PERCENT	COMPAC TION %	PASS OR FAIL		LOCATION OF TEST
)-30	4	1	89.1	19.9	91.8		TEST	#39
9-30	4	2	89.3	19.7	92.1		TEST	# 4 0
}−30	4	3	89.0	19.9	91.7		TEST	#41
9-30	4	4	78.0	21.0	80.4		TEST	#48
}−30	4	5	78.3	21.8	80.7		TEST	#49
า-30	4	6	87.1	20.6	89.7		TEST	#50
30–د	4	7	82.0	21.1	84.5		ŢEST	#42
					-			
	†	<u> </u>						
				L				

FIELD COMPACTION TEST K & S Engineers, Inc. 9715 Kennedy Avenue, Highland, IN 46322, Phone (219) 924 5231 Environmental Contractors P ACS FILE NO. 6783 of Illinois, Inc, (ECI) R 410 S. Colfax o Griffith, Indiana 5290 Nimtz Road DATE: 10-1-02 P.O. Box 2071 REPORT NO. 13 Loves Park, IL 61111 T SHEET 1 OF 1 Attn: Mr. Randy Price **COMPACTION OF GRADE** METHOD OF COMPACTION TYPE OF FILL **MOIST FROZEN** VIBRATING PLATE TONE SAND DAMP SOFT VIBRATING ROLLER____ WET X SHEEPS FOOT ROLLER____ LAY LOOSE X Х DRY FIRM RUBBER TIRE ROLLER SLAG LABORATORY DATA AND PROCEDURES FIELD TEST METHOD ASTM D 1557 - 91 ______ METHOD_____ ASTM D 1556 - 90_____ ASTM D 3017 - 93 X STM D 698 - 91 X METHOD A PROJECT SPECIFICATIONS___ OTHER EFERENCE TEST No.: 4 Griffith Source Material SPECIFICATON REQUIREMENTS VIAXIMUM DENSITY PCF 97.0 ____ % MAXIMUM DENSITY PTIMUM MOISTURE% 21.5 % RELATIVE DENSITY MOISTURE REF. TEST DRY COMPAC-PASS **LOCATION OF TEST** No. No. DENSITY PERCENT TION OR PCF FAIL 4 23.3 | 93.1 1 90.4 TEST #35 9 - 10 - 14 23.4 97.4 **TEST #45** 2 92.1 4 3 84.3 22.0 87.0 TEST #44 0 - 10 - 14 4 92.2 23.5 95.0 TEST #56 4 97.1 21.6 5 94.2 TEST #52 0 - 14 86.1 23.2 88.7 0 - 16 TEST #51 4 7 81.2 78.8 21.7 TEST #47 0-1

Sand Cone Method Testing Results

K & S Engineers, Inc. 9715 Kennedy Avenue - Highland, IN 46322 (219)924-5231 • (773)734-5900 • Fax (219)924-5271

2c:Client

DATA SHEET FIELD COMPACTION TESTS

С	Environmental Contractors		ACS	FILE NO.	6783
	=		410 S. Colfax	DATE	9-24-02
-	5290 Nimtz Road	0	Griffith, Indiana	SHEET	1 OF 1
Ε	P.O. Box 2071	J	·	REPORT	
N T	Loves Park, IL 61111	E		INSPECTO	
	Attn: Mr. Randy Price	T			on Mair

"	TYPE OF FILL	C	ONDITION OF GRADE		METHOD OF COMPACTION		
STON SAND CLAY SLAG	AND X DAMP X LAY MOIST		FROZEN SOFT LOOSE X FIRM		VIBRATING ROLLER VIBRATING PLATE SHEEPSFOOT ROLLER RUBBER TIRE ROLLER		
	TEST NUMBERS	3					
ı	WT. OF SAND + CONT. BEFO	RE TEST (LBS)	13.41				
2	WT. OF SAND + CONT. AFTE	R TEST (LBS)	6.33				
3	WT. OF SAND - (1) - (2) (LBS)		7.08_				
4	WT. OF SAND TO FILL CONE	(LBS)	3.83				
5	WT. OF SAND TO FILL HOLE	(3) - (4) (LBS)	3.25				
6	WT. OF EXCAVATED SOIL +	CONT. (LBS)	3.85				
7	WT. OF CONTAINER (LBS)		.61				
8	WT. OF EXCAVATED SOIL (6) - (7)	3.24				
9	DENSITY OF CONTROL SAN	D (PCF)	96.2	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·	
1 10	WET DENSITY OF SOIL (8) X	(9)/(5) (PCF)	95.9	<u></u>			
10A	TIN NO.		KS-27	<u> </u>		·	
11	WET WT. OF SAMPLE + TIN	(GMS)	142.27				
12	DRY WT. OF SAMPLE + TIN (GMS)	134.57				
13	WT. OF WATER (11) - (12) (G	MS)	7.7				
14	WT. OF TIN (GMS)		31.08				
15	DRY WT. OF SOIL (12) - (14) ((GMS)	103.49				
16	MOISTURE (13) X (100)/(15) (%)	7.44				
17	DRY DENSITY (10) X 100/100	+ (16) (PCF)	89.3				
18	MAXIMUM DENSITY (PCF)		109.0				
19	OPTIMUM MOISTURE (%)		11.0%				
20	REFERENCE: LAB NUMBER		#1 Wetland San	d Material			
21	COMPACTION (17) X 100/(18) (%)	81.9				
22	COMPACTION REQUIRED (9	(6)					
23	PASS - FAIL	· · · · · · · · · · · · · · · · · · ·					
24	LOCATION	#1					
REM	ARKS:		 				

K & S Engineers, Inc. 9715 Kennedy Avenue - Highland, IN 46322 (219)924-5231 - (773)734-5900 · Fax (219)924-5271

DATA SHEET FIELD COMPACTION TESTS

	P ACS R 410 S. Colfax O Griffith, Indiana J E C T	FILE NO. 6783 DATE 9-24-02 SHEET 1 OF 1 REPORT NO. 2 INSPECTOR RAJESH MALIK
--	---	--

 	TYPE OF FILL	(CONDITION OF GRADE		METHOD OF COMPACTION
STON SAND CLAY SLAG	<u> </u>	DRY DAMP MOIST WET	FROZEN X SOFT LOOSE FIRM	X	VIBRATING ROLLER VIBRATING PLATE SHEEPSFOOT ROLLER RUBBER TIRE ROLLER
	TEST NUMBERS		2		
-	WT. OF SAND + CONT. BEFO	RE TEST (LBS)	13.35		
2	WT. OF SAND + CONT. AFTE	R TEST (LBS)	7.21		
3	WT. OF SAND - (1) - (2) (LBS)		6.14		
4	WT. OF SAND TO FILL CONE	(LBS)	3.83		
5	WT. OF SAND TO FILL HOLE	(3) - (4) (LBS)	2.31		
6	WT. OF EXCAVATED SOIL +	CONT. (LBS)	3.25		
7	WT. OF CONTAINER (LBS)		.62		
8	WT. OF EXCAVATED SOIL (6) - (7)	2.63		
9	DENSITY OF CONTROL SAN	D (PCF)	96.2		
10	WET DENSITY OF SOIL (8) X	(9)/(5) (PCF)	109.5		
IOA	TIN NO.		KS-44		
11	WET WT. OF SAMPLE + TIN	GMS)	130.96		
12	DRY WT. OF SAMPLE + TIN (GMS)	115.46		
13	WT. OF WATER (11) - (12) (GI	MS)	15.50		
14	WT. OF TIN (GMS)		31.88		
1 15	DRY WT. OF SOIL (12) - (14)	GMS)	83.58		
16	MOISTURE (13) X (100)/(15) (%)	18.6		
17	DRY DENSITY (10) X 100/100	+ (16) (PCF)	92.3		
18	MAXIMUM DENSITY (PCF)		107.5		
19	OPTIMUM MOISTURE (%)		17.5		
20	REFERENCE: LAB NUMBER	 -	# 2 Merriville So	urce Materia	N. Company
21	COMPACTION (17) X 100/(18) (%)	85.9		
22	COMPACTION REQUIRED (9	<u> </u>		1	
23	PASS - FAIL		 		
24	LOCATION		#22		
2524	A D L' C				

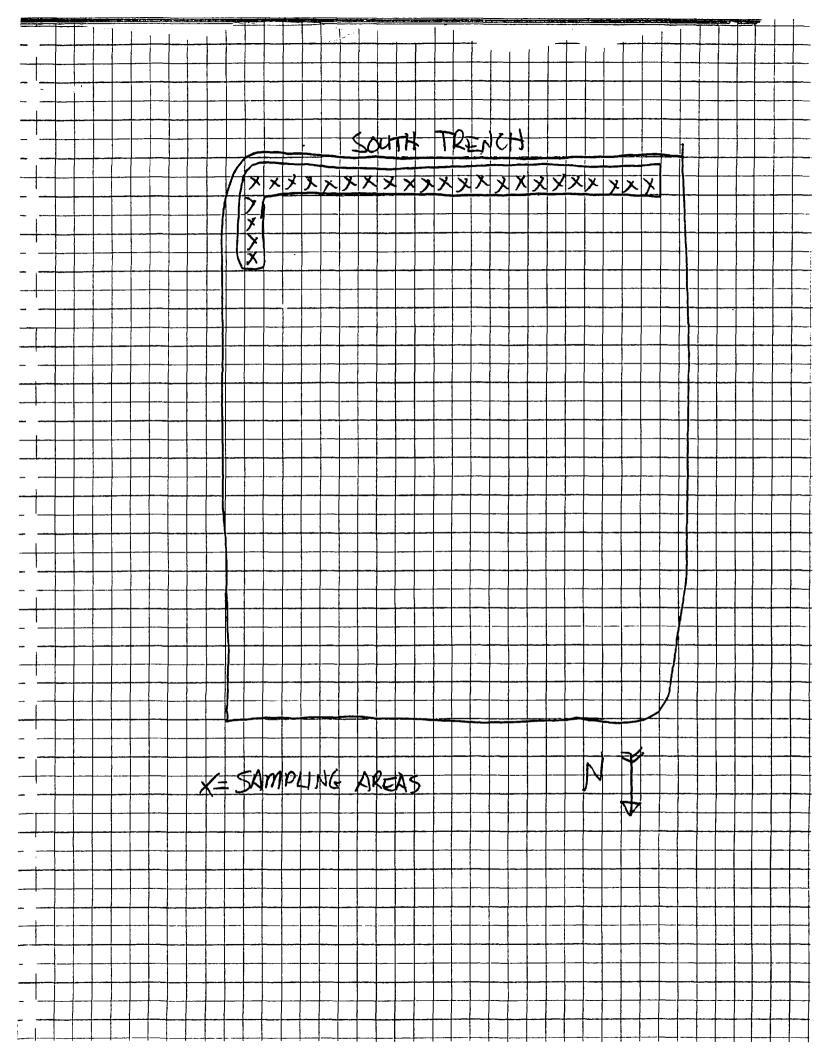
REMARKS:

K & S Engineers, Inc.
9715 Kennedy Avenue - Highland, IN 46322
(219)924-5231 • (773)734-5900 • Fax (219)924-5271

2c:Client

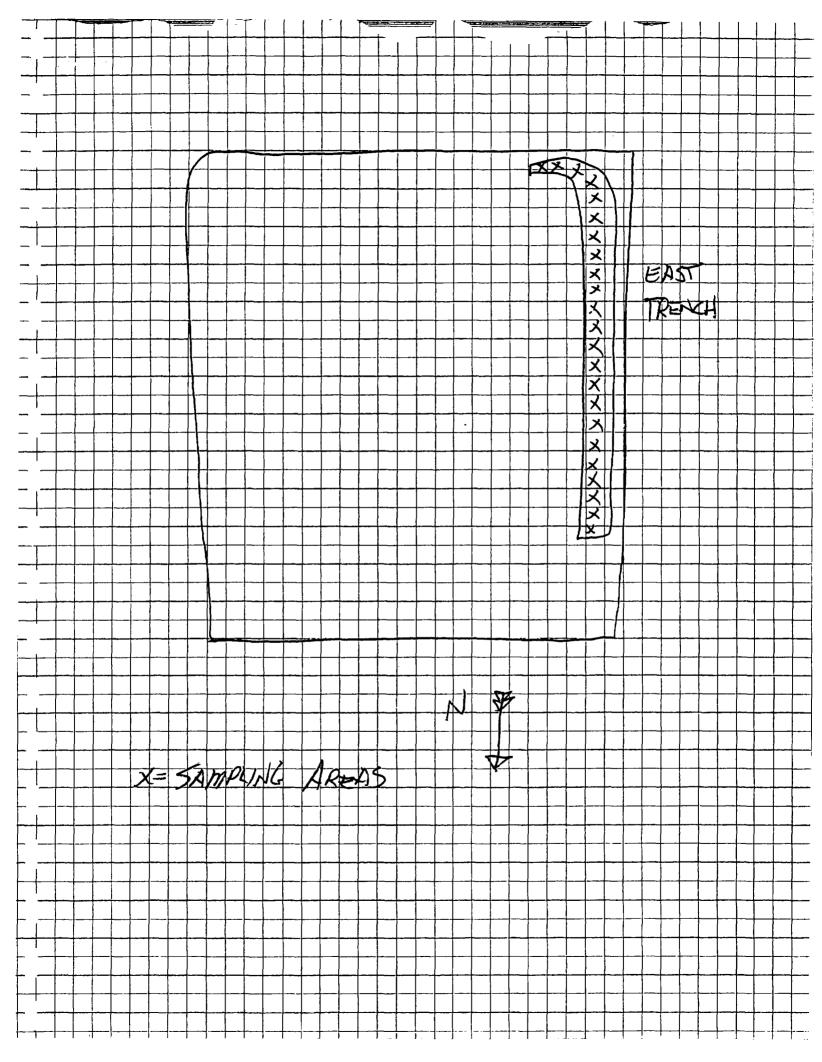
DATA SHEET FIELD COMPACTION TESTS

CLIENT	of 52 P. Lo	vironmental Con Illinois, Inc. 290 Nimtz Road O. Box 2071 oves Park, IL 6	(ECI)	P ACS R 410 S. Colfa: O Griffith, Inc		·	FILE NO. 6783 DATE 10-1-02 SHEET 1 OF 1 REPORT NO. 3 INSPECTOR Venkat
1		TYPE OF FILL	C	ONDITION OF GRADE		метн	OD OF COMPACTION
S I C	TONI AND LAY LAG	X	DRY DAMP MOIST WET X	FROZEN SOFT LOOSE FIRM		VIBRATING RO VIBRATING PL SHEEPSFOOT R RUBBER TIRE F	OLLER
-		TEST NUMBERS	S		<u> </u>		
	1	WT. OF SAND + CONT. BEFO	RE TEST (LBS)	13.87			
	2	WT. OF SAND + CONT. AFTE	R TEST (LBS)	8.55		· · · · · · · · · · · · · · · · · · ·	
Ĺ	3	WT. OF SAND - (1) - (2) (LBS)		5.32			
	4	WT. OF SAND TO FILL CONE	(LBS)	3.80		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	5	WT. OF SAND TO FILL HOLE	(3) - (4) (LBS)	1.52	ļ	· · · · · · · · · · · · · · · · · · ·	
'_	6	WT. OF EXCAVATED SOIL +	CONT. (LBS)	2.05			
آبـــا	7	WT. OF CONTAINER (LBS)		0.45	ļ		
۱ _	8	WT. OF EXCAVATED SOIL (6	5) - (7)	1.60			
B}	9	DENSITY OF CONTROL SAN	D (PCF)	96.2	ļ		
1_	10	WET DENSITY OF SOIL (8) X	(9)(5) (PCF)	101.3			
	0A	TIN NO.		KS-23	ļ. <u>.</u> .		
1	11	WET WT. OF SAMPLE + TIN		82.29	<u> </u>		
	12	DRY WT. OF SAMPLE + TIN	(GMS)	73.50	<u> </u>		
-	13	WT. OF WATER (11) - (12) (G	MS)	8.79	<u> </u>		
_	14	WT. OF ITN (GMS)		31.47	<u> </u>		
"├-	15	DRY WT. OF SOIL (12) - (14)		42.03			
-	16	MOISTURE (13) X (100)/(15) (20.9	<u> </u>		
-	17	DRY DENSITY (10) X 100/100) + (16) (PCF)	83.8	<u> </u>		
 -	18	MAXIMUM DENSITY (PCF)		97.0	ļ		
	19	OPTIMUM MOISTURE (%)		21.5	<u> </u>		
7_	20	REFERENCE: LAB NUMBER		-	 		···
	21	COMPACTION (17) X 100/(18	3) (%)	85.9	ļ		
٦	22	COMPACTION REQUIRED (9	//•)		 		
	23	PASS - FAIL					
٩	24	LOCATION		Test No. 44			
[]	REMA	ARKS:					

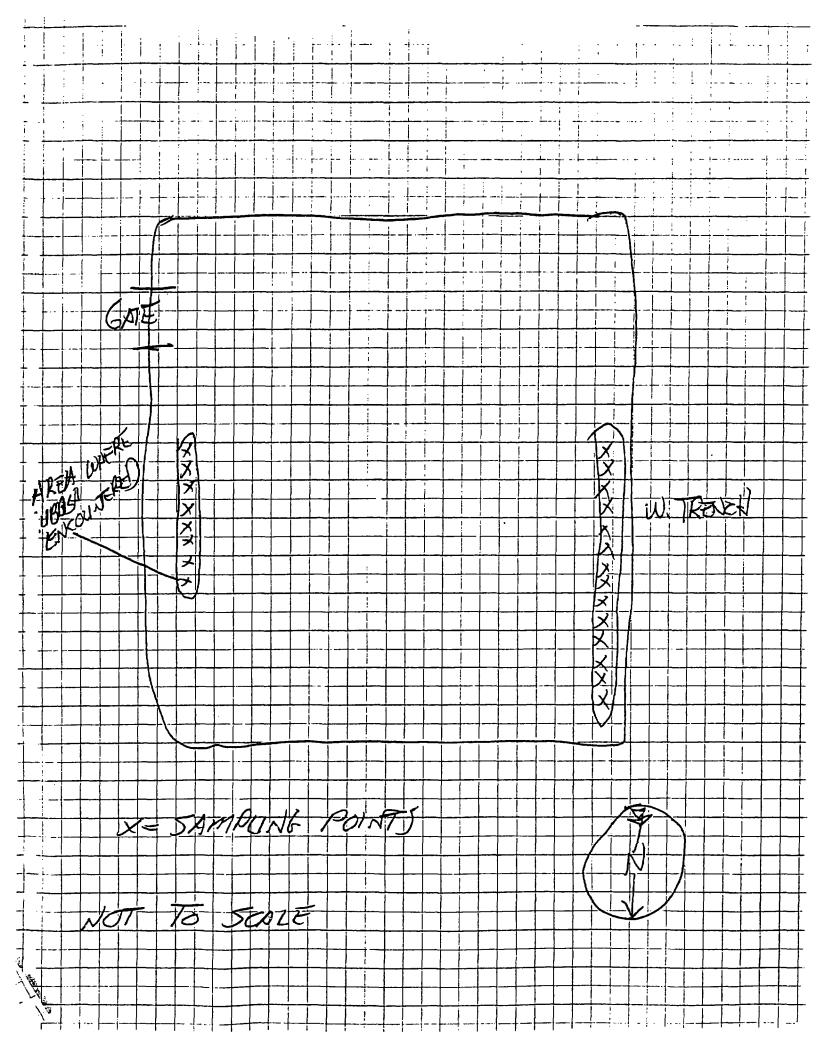

APPENDIX J

Air Monitoring Logs for Trench Installation Activities

FUGITIVE AIR EMISSIONS MONITORING LOG


TIME WORK OAK (NON) OCATION WORK ZONE 8 AM DIGGING TRENCH SATH TRENCH OO O OO OO OO OO OO OO OO OO OO OO OO	Date:	9-3-02	Temp/V	Wind Speed	& Direction: 6	66°	r/5-	10 m	PH N	
8AM DIGGING TRENCH SOUTH TRENCH 1 000 1 1 1 9AM 1 000 1 1 1 10AM 1 000 1 1 1 12NON 1 000 1 1 1 12NON 1 000 1 1 1 12NON 1 000 1 1 1 12PM 1 000 1 1 1 14PM 1 000 1 1 1 15PM 1 000 1 1 1 1 15PM 1 000 1 1 1 15PM 1 000 1 1 1 15PM 1 000 1 1 1	•					2 DI	AD COURT	PADING	/DOWNY	VIND SE
9 Am	e Sur <u>vio</u>	W@BK@Bm	ĸţijſŎŊĸĸŊĊĄijĬſŊŊ	ecki.	ZAONE.	241	(ØXYM)	@2	1801.	. (00)
9 Am O O O I Am O O O I Am O O O I I I I I I I I	8Am	DIGGING	TRENCH	SOUTH	TRENCH	/	010	1	/	/
	9AM					/	0:0	/	/	/
IAM	10AM					/	0:0		/	/
IPM	IIAM						00		/	/
2 PM	15 MON					/	+		/	/
2 PM	1PM					/	0.0			/
4 PM	2PM						0:0		<u> </u>	/
SPM	3PM				····	/	010		_ / _	/
Complaints/Symptoms: NONE Chemicals/Equipment in Use: JD 710 D Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ONY.	4PM					/			/	
Complaints/Symptoms: NONE Chemicals/Equipment in Use: JD 710 D Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL OAY.	5PM				-		0.10	/	/	/
Complaints/Symptoms: NONE Chemicals/Equipment in Use: DO 710 D Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ONY.							_ /	/	. /	/
Chemicals/Equipment in Use: JD 710 D Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL OSY.						<u> </u>			and the second	
Chemicals/Equipment in Use: JD 710 D Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL OBY.										
Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL OBY.	NONE	-						· · · · · · · · · · · · · · · · · · ·		
Engineering Controls: MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ONY.	Chemical	s/ Equipment ii	n Use:	·· ·						
MINI RAY I H PID METER PPE in Use: LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ONY.	JD .	710D								
LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ODY.	1 -	•						-		
LEVEL D Observation/Comments: NO DETECTABLE VOC'S ALL ODY.	minst	RAY IH	PID METE	-R						
Observation/Comments: NO DETECTABLE VOC'S ALL ODY.	PPE in U	se:	7.010							
Observation/Comments: NO DETECTABLE VOC'S ALL ODY.	/ Enk	FL D								
			•							
	NO L	ETECTA &	BLE VOC'S,	ALL	OAY.					
Dany Price						-				

Analyst: Health & Safety Officer


FUGITIVE AIR EMISSIONS MONITORING LOG

Date:	7-4-02	Temp/	Wind Speed & Direction:	63°/	5/5=	10 m	M N	
•				3 DI	RECTURE	ÄDING	/DOWN	VIND #22
	างเพลารากสา	REALITORY FROM A CONTRACT	WOSK WORL	1:(8	Ø⁄λ/Λι		JANL.	
				512	0.7.12			
SAM	0/66110	TRENCH	EAST TRENCH		0.0	/	/	/
9AM				/	0:0	/	/	
10AM				/	0.0	/	/	/
IIAm				/	0.0		/	/
124004		<u> </u>		/	0.0	/	/	
IPM				/	0.0	/	/	/
2 pm				/	0.10	/	/	/
3Pm				/	0.0	· ·	/	/
4PM					00	/	/	/
5PM		<u></u>		/	00		/	
					/	/	/ ************************************	/
)nuss nts/Symptoms	أحسائه والمتراجي والمستحدث والمستحدث والمتعدد						
		•						
MONE	S/Equipment	in Tigo:						
1		in Use:						
	710D							
Engineeri	ing Controls:							
MINI	RAY 14	PID METEL	R					
PPE in Us	se:							
1=1/6	el D						1	
Observati	ion/Comment	s:						
NO DE	ETECTA 6	BLE VOC'S A	LL DAY.					
	0	$\Omega \sim$						
Analyst:		1616						

FUGITIVE AIR EMISSIONS MONITORING LOG

Date: 9-5-02	Temp/Wind S	Speed & Direction:	550	<u> </u>	5 MPI	4_	
			TO SEE	RECERT	ADING/	DOWNN	JIND 激毫
				0 У/Vi			
ACO ELYAZECKO SESTONY	NTO CONTRACTOR	(XX0)	(A. 1)	OV.			(00) 1
8AM DIGGING TA	PENCH W.	TRENCH	/	016	1/	1	/
9AM			/	0.0	/	/	/
IOAM			/	0.6	/	/	/
IIAN			<u> </u>	010	/		
RNOON				00		/	/
IPM /			/	'	/		
2 PM // / 2				'	-	/	
3 pm		AST /RENCH	,	0.0			
4 pm			- ' -	0.0		- ',	
5 111			,	0,0		· ; -	
Complaints/Symptoms:	<u> </u>	<u> - Lie amerika di militara nyang nyapabaha</u>	<u> </u>				
NONE							
Chemicals/Equipment in Use:							
5D 710D							
Engineering Controls:							
	n m=TT=D						
MINI RAY IN PI	D MEIEIC						——,
1 - 0							
Observation/Comments:							
AT 4:40 PM ON THE	EAST TRENCH	ABOUT 1/3 TI	EWA	y From	n 71/19	50471	4 _
WE HIT A PILE OF K	UBBISH THAT	THAU A SOL	USW	SME	1. T	CHE	KEU
THE TRENCH WISH Analyst: KAM	y Arice	NOD NO	NEBA	DINES	WH	EN I	O la a
Health & Safety O	fficer	CHECKE			_	- •	
Environmental Co	ntractors of Illinois, In		م آن در	C- 01	6pp	m A	EUNIND
		T. Chec	KE)	Ea	75	PREST	N/N&
		ZONE A	DI	ם אמו	r se	TAN	<i>Y</i>
		REDIDIN	125				

ENVIRONMENTAL CONTRACTORS OF ILLINOIS, INC. NICOR - FREEPORT IL – JOB #15503 FUGITIVE AIR EMISSIONS MONITORING LOG

Date:	9-6-02	Temp/W	Vind Speed &	Direction: 🔏	5-	90°	.5 4NN	y NO.	wind
•						<u> </u>		/ Downy	
THEY IT	WORK OBSEASING	Z(0)EIZZXXII(0)Z	%(0) ; √	7 ∉ 0)⊼13	ii įs	⊙ X⁄∑∑i	.02	<u>ingl</u>	co.
7.30	Digging +	rench	East t	rench	/	010	/	/	/
830	,,,,		1		/	00	1	/	/
930					/	0'0	/	/	/
10 30		· ·			/	00	/	/	/
1/30					/	00	/	/	/
100			<u> </u>		/	0'0	/	/	/
200			North	french		0'0	/	/	/
300				`		0'0	/	/	/
4 00						0'0		/	/
500						0/9	/	/	/
600					/	0/0	/		/
Complain	ots/Symptoms:				<u> </u>		STEET WITH		
1 -	lone								
	S/Equipment in Use								 -
Chomica	Est Equipment in Coo								
<u> </u>		mini	KAE.						-
	ing Controls:	•							
	nini RAE	YID	Mote						
PPE in U	se:								
	Level	D.						<u>.</u>	
Observati	on/Comments: A	round, 8	Am w	e hit	Debri	3.1~	+re	~ch	ibout
10 F+	long. From	around 11	45- 24 1 6.1	ding of	hit	deb	riš a	150 m	fires.
I als	ion/Comments: A lowy. From we hit com o monitored	the cal	0 de 1	nachine	Fo	1 15	min.	NO	hits
	01	1							

Health & Safety Officer

ENVIRONMENTAL CONTRACTORS OF ILLINOIS, INC. NICOR - FREEPORT IL – JOB #15503 FUGITIVE AIR EMISSIONS MONITORING LOG

Date:	9-7-02	Temp/W	ind Speed & Directio	n: 20°	- 90°	NO	wno	`
				J. DII	रेड(द्या <u>स्ट</u>	ADING	DOWNY	IND &
a furyio	WORKORE WINDS	rocantor.	WORK MONE	ЩS	OV.VI	® 2	្រាល់ប	©
73*	Digging An	chor	worth soil	k ./	0/0	/	/	/
745	treach		1	/	0'0	/	/	1
800				1	010	1	1	1
830				/	010	/	1	1
845				/	0'0	/	1	1
900			1	/	00	7	1	/
			•	/	7	1	/	1
——————————————————————————————————————				/	/	/	1	1
				/	/	/	1	1
! · ·				/	1	_/	/	/
				/	/	/	1	1
Complair	DIES ats/Symptoms:				36 T			
	No ~	رو						
Chemica	ls/Equipment in Use:		-					
	m	710 D						ı
Engineer	ing Controls:		· · · · · · · · · · · · · · · · · · ·					
	mini R	ae_	Pid	meter				
PPE in U					-			
	Level	<u> </u>						
Observat	ion/Comments:	6+ a	my hits	N_{i}	pro	hlem	s on	<u>د</u>
all	· · · · · · · · · · · · · · · · · · ·				· 			
	0 1							

Analyst:

Health & Safety Officer

ENVIRONMENTAL CONTRACTORS OF ILLINOIS, INC. NICOR - FREEPORT IL – JOB #15503 FUGITIVE AIR EMISSIONS MONITORING LOG

Date:	9-9-02	. Temp/V	Vind Speed & Direction: _		1- 7	-02	=	
				ANT DI	TROTEDI	PATING	/DOWNV	VINI SERIE
S SHIVE	MOBROSE OF THE TOTAL STREET	\ir\(\oldot\(\oldot\)\(\oldot\)\(\oldot\)	WORKZOĘ	<u>iifg</u>	(0)\(\frac{1}{2}\(\frac{1}2\(\frac{1}{2}\(\frac{1}2\(02	ाद्य जे :	(CO)
7 00	Anchor +x	each	Merth end	2	010	/	/	/
715	1110000	(13 0-1	North end	1	00	/	/	7
730			1	1	06	1	/	/
7 45	 			1	0/0	1	1	/
800			,	/	0'0	1	1	1
0	 			7	/	1	1	,
	 		, , ,	1	7	1	1	/
				 	1-/-	1	1	1
				1	/	1	1	1
 				 	/	/	1	1
				/	/	1	/	1
DECEMBER 1	Ojnes							
Compla	ints/Symptoms:	,						
		\sim 0 :	ne					
Chemica	als/Equipment in Use:					- · · · · · · · · · · · · · · · · · · ·		
,		7100	 ≁n					
Enginee	ring Controls:	7100	1ν		···· ·		·	
	_	٠. ^	~ ₀					
PPE in U		NI K	are PII)				
112 m C)SC.							
		Leve	/ D				<u>u</u>	
Observa	tion/Comments:		Hits.					
	Digging where	ine la	Ft 4 15'	toad	رم ال	to s	ije	
	11 00	<u> </u>	19	<u>, , , , , , , , , , , , , , , , , , , </u>			-	
Analyst: _	Stew Polm	·						
	Health & Safety Of	ticer						

FUGITIVE AIR EMISSIONS MONITORING LOG

Date: 9	27/02 Temp/	Wind Speed & Direction: _		···			
			DIR	ECT RI	EADING	/DOWNY	VIND
TIME	WORK OPERATION/LOCATION	WORK ZONE	H,S	OVM	O2	LEL	CÓ
10:00 m	Repair well/checkliner		010	010	310	0/0	· /5
			/	/	/	/	1
			/	1	1	/	/
			1	/	/	/	/
			/	1	1	1	/
			/	/	/	/	/
			/	/	/	/	/
			1	1	1	1	1
			/	/	1	1	1
			/	/	1	/	/
			/	/	/	/	/
Complain	tts/Symptoms:						
Chemical	s/Equipment in Use:						
Engineeri	ng Controls:						
PPE in Us	se:						
Observati	on/Comments:						

Analyst: Steve fal

Health & Safety Officer

APPENDIX K

Manufacturer/Supplier Specification Sheets

AUC 22 OZ (THU) 08 32 LING INDUSTRIAL FABRICE

ERU-IRA

843 875 8297

PACE 1

GEOTEXTILE DIVISION 2550 WEST FIFTH NORTH STREET

SUMMERVILLE

SOUTH CAROLINA 29483-9669

GEOTEXTILE QA LINE: 1-800-543-9964

FAX: 1-843-875-8276

WEBSITE: WWW.lisuind.com E-MAIL: Hag@lingind.com

August 22, 2002

Dear Sir or Madam:

This letter is to certify that Style 350EX, a nonwoven polypropylene fabric supplied by LINQ Industrial Fabrics, Inc., meets the fabric properties listed below:

PROPERTY	TEST PROCEDURE	MET	TRIC	BNGLISH		
		MARY		MARY		
Grab Tensile Strength	ASTM D-4632	1690	N	380	lba	
Grab Elongation	ASTM D-4532	60	*	50	%	
Trapazoid Tear	ASTM D-4533	645	N	145	Iba	
Puncture	ASTM 0-4833	1088	N	240	ibe adi	
Mullen Burat	ASTM D-3788	5512	kPa	800	psi	
Permittivity	ASTM D-4491	0.5	MOC.	0.5	E0C.,	
Permeability	ASTM D-4481	0.25	CTTV9GC	0.25	cm/sec	
A.O.S.	ASTM 0-4751	0.150	mm	100	U.S. Sieve	
UV Resistance (500 hrs)	ASTM D-4355	70	%	70	%	
Water Flow Rate	ASTM D-4491	1428	.lpm/m²	35	.gpm/ft ²	

MARV: Minimum Average Roll Value

Sincerely,

Jay Wilson

Technical Services Engineer

10/11/2002 FRI 15:16 FAX 815 332 3130 JOE COOLING & SONS, INC

M 002/003

Cooling Landscape Contractors

P.O. Box 506 • Cherry Valley, II. 61016 • Phone: 815.332.2380 • Fax: 815.332.3130

October 11, 2002

Environmental Contractors of IL Attn: Daryl Streed 5290 Nimtz Road Loves Park, IL 61111

Re: American Chemical Service Seed

Daryl:

The special seed mix that was required for the above referenced project was applied at a rate of 225 lbs per acre. The seed mixture specs are also included with this letter.

If you have any questions, please feel free to call me at 815-332-2144.

Sincerely,

Chris Cooling
Cooling Landscape Contractors, LLC.

SUMMARY OF SEED ANALYSIS REPORTS

The Following Seed Lots Were Supplied To: Cooling Landscape Contractors

For use in: American Chemical Mixture, Lot. CLC72

Vibrent l	(D GREEK) * Perenmal Ryegr	155		LLYN Seed Testi	ng T		T.39-0	
99.14%	100.00 PHO 100.00		ert Matter: .86%	#97eed Seed.	Germin# 90%	1985年	ert Dale : 2/02	No IL Nozion
	D-OKSERD A	2. 180	2 422 1	Smith Seed Serv	CY:	LOI	OR REFE	PERE NO.
₹ Pare Seed & 98.76%	20°		R4%	Weed Seed - .20%	Germina 85%	Ting the	est Date: 8/02	No IL Noziona
	DOPSEED	:Ue	S No.	egon State Unive	CY CY	LOT	OR REKE V17-0-0	PENCE SO
Pure Seed .= 99.36%	Coner Cup .00°		11 Maffer .64 %	.00%	Germinat 85%	od Ox	est Date 2/02	No IL Nexions
No.	DOFSED		a de la companya de l	isting agen	C. C.	For	OR REFE	RENGE NOTE
Par-Seul	ROD-POP	ą o	Ft Matter \$	West Seed	Germina	or ger	st Diffe	* Enonum
i kon	D.OF, STED	i is	4 2 A 1	RETING YGEN	CŽ.	LOT	ORREST	ONC TOPE
Pare Seed	Other Capp	i jan	i Watter	West Seed	Garminuil	о ц? "КД	st Batt	W. Dienstein
KIN	DOESEED V	一个的。		tating Year	CY	Lor	ORRESE	BENCE NO ES
Pare Seed 33	Month Spil	A	daviater a	Nyed Seed	-Germinad	once in the	at Date.	A STORES
· KIN	d of second	34	4 (M) T	esting agen	CY TOWN	LOI	OR REFE	RENCE NO.
Pure Seed ;	Potatr Ccop	ine	it Mutter	West Seed	Germinati	or a Te	st Date	Z Honolia A
Date: Septe	mbar 74 784				1.	4 Min	SKI	ing bear

The accuracy of the information supplied is the respondibility of the testing agencies listed. Copies of the individual reports I sted are on file.